

CONTOUR Science Operations

Ann Harch Cornell University December, 14 2000

ann@baritone.tn.cornell.edu

CONTOUR Science Operations - General

Center of activities will be Science Operations Center at Cornell

- PI Location overall science direction
- Primary center for science ops, will serve as interface between instrument teams and APL for coordination and development of science activity command sequences and the s/w required to build these sequences
- Instrument teams involved, tasks distributed to take advantage of existing expertise

High degree of heritage from current missions:

- CONTOUR Science Teams currently working with similar instruments on other missions...
 - CRISP/CFI NEAR MSI/NIS at Cornell/APL
 - NGIMS Cassini INMS at GSFC
 - CIDA STARDUST CIDA in Germany

CONTOUR Science Operations - Facilities and People

SCIENCE OPERATIONS CENTER

• Located at **Cornell**, Ann Harch (science coordinator), Brian Carcich (programmer)

INSTRUMENT TEAMS:

- CRISP/CFI APL Scott Murchie (science), Jeff Warren (instrument engineer),
 JPL Tony Taylor (optical navigation)
 - **Cornell** -Ann Harch (sequence design)
- CIDA MPI,Garching Jochen Kissel (science), FMI, Helsinki Jouni Ryno (instrument engineer, sequence design)
- NGIMS **GSFC -** Paul Mahaffy (science), Mike Paulkovich (instrument engineer, sequence design)

CDR December 12-14, 2000

Operational Interfaces and Responsibilities

Science Operations - Overview of Responsibilities

Development of Science Sequencing Tools:

- Develop instrument sequence generation s/w opportunity analysis and SEQGEN interface
- Lead SEQGEN adaptation for instruments development of reusable command blocks, modeling of instrument flight rules and constraints
- Support Mission Operations (MOps) testing of s/w and process at APL

Sequence Generation

- Plan, schedule, create, validate and deliver to MOps all science observations and instrument calibration command sequences
- Post-event process evaluation

Science Sequence Generation Software => Two-step process

INSTRUMENT SEQUENCE GENERATION S/W:

- Instrument-specific software, assists with 'opportunity analysis' and generation of command sequences
- <u>Must</u> address whether the activity makes 'sense' and will return data that is scientifically meaningful (SEQGEN will not do this)
- Ultimately must convert command sequences into standard SEQGEN sasf input file based on approved CAS/Fragment definitions

SEQGEN

- Project-maintained s/w, based on reusable command macros, final validation of sequences, models s/c resource usage, instrument health and safety
- Graphical representation of instrument and engineering activities, DSN contacts, etc.
- May run with individual instrument input, all science instruments merged, and/or with engineering activities merged

Comet Nucleus Tour CDR December 12-14, 2000

CRISP/CFI Opportunity Analysis and Sequence Generation Software

- HIGH degree of heritage from NEAR
- reads SPICE (comet and s/c ephemerides, etc)
- generates visual representation of comet and other targets, instrument FOVs
- simulates s/c pointing and CRISP mirror motion
- simulations generated by structures equivalent to defined CASs and Fragments for CRISP/CFI instrument operation and guidance & control commanding
- modeling and constraint check:
 - s/c pointing constraints
 - check that we are using valid CAS and fragments, parameters within range,
 - quality of science return
- output:
 - archive request files for each observation, equivalent to CAS format
 - SEQGEN 'sasf' in standard format for input
 - image frame data files (viewing geometry, sun angles, s/c orientation,

SEQGEN

SEQGEN Sequencing Blocks ('CAS', 'Fragments'):

- Users define reusable macros consisting of instrument and s/c commands
 - Type and order of commands is fixed
 - Timing deltas between commands and command parameters may be hardcoded or left variable
 - Absolute timing of the macro is left variable
- Makes it easy to call complex activities involving multiple commands that may need to be performed more than once
- These blocks are tested on hardware simulator for the full range of parameter variations before they are certified for use

SEQGEN Modeling:

• Users also may program SEQGEN to check instrument and spacecraft flight rules and constraints while using the macros

Science Activity Conflict Avoidance

SPACECRAFT POINTING:

- All s/c pointing for science operations (3-axis) commanded through the CRISP/CFI CASs
- Conflict of desires among instruments for s/c pointing resolved before sequence generation
- SEQGEN flags pointing conflicts between science and engineering SSR USAGE and POWER
- Allocations distributed to science with ops guidelines for all activities
- PI distributes among instruments, each instrument team must stay within those allocations
- SEQGEN modeling will check any violations

SPACECRAFT COMMANDING RESOURCES

• SEQGEN modeling will flag any problems

Science Sequence Generation PROCESS

- Science teams define high-level activity desires and objectives
- After approval by PI, science coordinator and MOps work together to schedule activities
- MOps delivers ops initial files to science coordinator and instrument teams
- Scheduling requests for science activities created by science teams using standard SEQGEN request file (approved CAS and Fragment blocks).
- Final merge of all science instrument files and constraint check in SEQGEN occurs at Cornell
- Instrument engineers review, validate sequences at instrument institutions
- Science coordinator delivers a set of files that is conflict free and will not violate health and safety of s/c or any instrument.

SCIENCE SEQUENCE DEVELOPMENT MATRIX

High Level **Activity** Design

Detailed

Design

Instrument **SEQGEN**

file

SEQGEN Engineer

Merge

Review

CRISP/CFI APL/Cornell/JPL Cornell **Cornell Cornell APL**

> Cornell **MPI, Garching** Cornell Helsinki FMI, Helsinki

GSFC GSFC GSFC Cornell **GSFC NGIMS**

CIDA

Comet Nucleus Tour CDR December

CDR December 12-14, 2000

CRISP/CFI Sequence Generation

Cornell APL, JPL SC **CRISP/CFI leads** Observation plans • Create high-level • Work high-level scheduling issues observation plans, with MOC, schedule observations requirements Ops G/L and Schedules plots, data files, analysis Design detailed observations using • Iterate with SC on design Cornell op analysis s/w, iterate with details science lead SEQGEN sasf file for review • Create SEQGEN file, run SEQGEN, • Review SEQGEN sasf file constraint check and model **Review Comments** SEQGEN review files • Engineer review, approve final • Run final individual CRISP/CFI file in **SEQGEN** file SEQGEN with all instrument files, deliver to Final Approval - email MOC following engr. approval

CDR December 12-14, 2000

CIDA Sequence Generation

Cornell MPI/FMI SC **CIDA leads** Observation plans • Create high-level • Work high-level scheduling issues observation desires, with MOC, schedule observations requirements Ops G/L and Schedules Detailed observation plans - Design detailed observations • Create SEQGEN sasf file based on design descriptive format using local op analysis s/w SEQGEN sasf file for review • Run SEQGEN, constraint check and model; • Review SEQGEN sasf file iterate with CIDA lead if problems **Review Comments** SEQGEN review files • Engineer review, approve final • Run final individual CIDA file in SEQGEN **SEQGEN** files with all instrument files, deliver to MOC after Final Approval - email engr. approval

A. Harch

CDR December 12-14, 2000

NGIMS Sequence Generation

Cornell **GSFC** SC **NGIMS** leads Observation plans • Create high-level • Work high-level scheduling issues observation plans, with MOC, schedule observations requirements Ops G/L and Schedules Design detailed observations using GSE op analysis and seq dev s/w, constraint Final SEQGEN sasf • Run NGIMS sasf file in SEQGEN, constraint check and model check and model •Write SEOGEN sasf file • Run final individual file in SEQGEN with SEQGEN review files • Engineer review, approve final other instrument files, deliver to MOC after **SEQGEN** files final engr. approval Final Approval - email

Instrument Team Roles in Science Ops

SEQUENCING S/W DEVELOPMENT:

- Provide instrument flight rules and guidelines, and instrument user guides
- Support development and testing of SEQGEN CAS/Fragments, and of implementation of modeling and constraint checking in SEQGEN
 - review of SEQGEN reports for each s/w build
- Develop pre-SEQGEN sequence generation tools
 - NGIMS GSE s/w will generation sequences, and translation s/w to write SEQGEN sasf file (GSFC)
 - Create CRISP/CFI visualization s/w and translation s/w to write SEQGEN sasf file (Cornell)
 - CIDA modeling, s/w to write SEQGEN sasf file (Cornell/FMI, Helsinki)

Instrument Team Roles in Science Ops (cont')

SEQUENCE BUILD

- Generate high-level instrument activity objectives
- Generate detailed design of sequences
 - CRISP/CFI (including Opnav) at Cornell
 - NGIMS at GSFC
 - CIDA at FMI, Helsinki
- Engineer review and validation of final SEQGEN activity command files and reports at instrument institutions

Roles of Science Coordinator in Science Ops

WORK WITH MOPS AND SCIENCE TEAMS TO DEVELOP SEQUENCE GENERATION PROCESS:

• Want a process that fits needs of each instrument team as well as Mission Ops

DEVELOPMENT OF SCIENCE SEQUENCING TOOLS:

- Provide feedback to CRISP/CFI/G&C command definition process, make sure that calibration and encounter activities as envisioned are commandable
- Lead SEQGEN CAS/Fragments development, implementation of modeling and constraint checking in SEQGEN for all instruments, and testing of above capabilities
- Write Science Sequencing User Guide

Roles of Science Coordinator in Science Ops (cont')

COORDINATE PLANNING of ALL SCIENCE ACTIVITIES:

- Maintain cognizance over planning and execution of all science activities, including real-time commands, and in-flight tests.
- Work operational conflicts and issues with MOps for scheduling and integration of normal science activities
- Prepare schedules and timelines for science sequence development, and make sure we keep to deadlines

BUILD SEQUENCES:

- Generate SEQGEN sasf input files (NGIMS file may be generated at GSFC)
- Merge all instrument SEQGEN input files (CRISP, CFI, CIDA and NGIMS), coordinate engineer reviews and correction of conflicts or constraint violations
- Deliver final sequences to MOps

Comet Nucleus TOUR CDR December 12-14, 2000

Science Activities - Launch to Hibernation

- Science Instrument Checkouts 9/2002
 - NIGMS Checkout
 - Pressure check interactive with ground (STOL implementation)
 - Blow cover Breakoff (pyrotechnic actuation)
 - Instrument Checkout Sequence (20% of comet sequence)
 - CRISP/CFI Checkout
 - Blow cover
 - Functionality test
 - Image quality/pointing star calibration
 - Encke Alignment Calibration (10/02?)
 - CIDA Checkout
 - Functionality Tests

Science Activities - Exit 1st Hibernation to Encke

- Earth Swingby Activities 8/2003
 - NGIMS
 - Instrument Checkout (before Earth flyby)
 - Earth Flyby Checkout (Earth 10 days)
 - Earth Flyby Sequence (simulates comet flyby)
 - Instrument Checkout (after Earth flyby)
 - CRISP/CFI
 - Earth/Moon Radiometric Calibrations (prior to flyby)
 - Earth Encounter Images (during flyby)
 - CIDA
 - Functionality Tests
 - Earth Flyby Sequence

Science Activities - Exit 1st Hibernation to Encke (cont')

- Encke Flyby 11/2003
 - NIGMS
 - Comet Flyby Checkout (encounter 10 days)
 - Comet Flyby Sequence
 - CRISP/CFI
 - OpNavs (begin encounter \ge -10 days)
 - Comet Encounter Images
 - CIDA
 - Functionality Tests
 - Comet Flyby Sequence

Science Operations - Prelaunch through Encke Flyby

- Instrument teams supply s/w User Guides, CMD dictionaries by Feb 01
- CAS/Fragment development Jan 01 => Feb 02 (basic blocks by Jun 01)
- Instrument sequence generation s/w, SEQGEN interface Apr 01 => Feb 02
- Build practice calibration and encounter sequences for simulations Jun 01 through Feb 02
- Support mission simulations Aug 02 May 02
 - test CAS/Fragments and checkout sequences
- Build post-launch instrument checkout sequences Feb 02 => Jul 02
- Post-Launch instrument checkouts Sep/Oct 02
- Build Earth Swingby and Encke Comet Flyby sequences Sep 02 => Oct 03
 - Support mission operations inflight tests of these sequences
- Earth Swingby Aug 03
- Encke Flyby Nov 03

CDR December 12-14, 2000

Science Operations Center Staffing Levels

CDR December 12-14, 2000

Science Operations Center Staffing Levels

