

PDR

1

Science Operations

Ann Harch Cornell University January 20, 2000

ann@baritone.tn.cornell.edu

9/26/2003 APH

Science Operations

SCIENCE OPERATIONS CENTER

- Overview
- Sequencing software
- Sequencing process

SCIENCE DATA CENTER

- Overview
- Data calibration
- Data archival

INTERFACES AND RESPONSIBILITIES

Science Operations Center

General

- Located at Cornell
- SOC will serve as interface between instrument teams and APL for coordinating development of and delivering science activity command sequences
- Efficient and reliable link with MOC at APL demonstrated by NEAR
- Instrument team locations:
 - CIDA MPI, Garching
 - NGIMS GSFC
 - CRISP/CFI Cornell

Science Operations Center

General (continued)

- Heritage from NEAR:
 - Cornell staff responsible for instrument activity sequences for MSI (multispectral imager), NIS (near-infrared spectrometer)
- Heritage from STARDUST:
 - CONTOUR CIDA is duplicate of STARDUST instrument
- Heritage from CASSINI:
 - NGIMS activity sequences similar to Cassini INMS

Science Operations Center

High-level Responsibilities

- Design instrument activity plans required to meet science objectives
- Define required instrument software performance
 - rates of commanding
 - rates of data acquisition and data flow to recorder
- Create conflict-free instrument activity sequences for calibrations, Earth flybys, comet encounters
- Develop contingency sequence plans for alternate miss distances at comets

Science Operations Center

Command Load Generation - Software

- Opportunity analysis NEAR 'Orbit' software
 - reads SPICE ephemeris kernels
 - generates visual representation of comet and instrument FOVs, simulates s/c pointing
 - saves graphically generated activities as SEQGEN commands
- Sequence generation SEQGEN
 - reusable command blocks or "CASs"
 - includes instrument and spacecraft functions
 - same software at SOC, MOC, and instrument institutions
 - models performance of integrated command load

Science Operations Center

Command Load Generation - Process

- SEQGEN CASs developed by APL, with input from instrument teams
- Detailed command sequences for science instruments generated at home institutions
 - CIDA MPI, Garching
 - CRISP/CFI Cornell (includes OPNAV)
 - NGIMS GSFC
- Sequences merged, conflicts resolved at SOC
 - Performance modeled
- Merged SEQGEN activity request file delivered to MOC for integration with spacecraft commands

Science Data Center

• Located at Cornell

High-level Responsibilities

- Convert telemetry to experimental data records (EDRs)
- Validate and calibrate data
- Distribute data to science team
- Archive data to PDS

Science Data Center

Conversion of Telemetry to EDRs

- Instrument data written in near-real time to PDS format
 - binary data with descriptive ASCII header
 - science team will work with PDS to define file headers
- Attitude and timing data recorded in SPICE files
 - SP Kernels (ephemerides) from JPL NAV, s/c attitude telemetry from APL MOC
 - Cornell SDC creates:
 - I Kernel (instrument definition)
 - C Kernel (pointing)
 - E Kernel (instrument events)
 - Target Attitude and Shape (Thomas)

9/26/2003 APH

Science Data Center

Data Calibration and Validation

- Validation verifies that commanded instrument sequences have been executed
- Validation determines that binary and header data are accurate
- Calibrations utilize results of on-ground and inflight tests

Science Data Center

Data Calibration and Validation (continued)

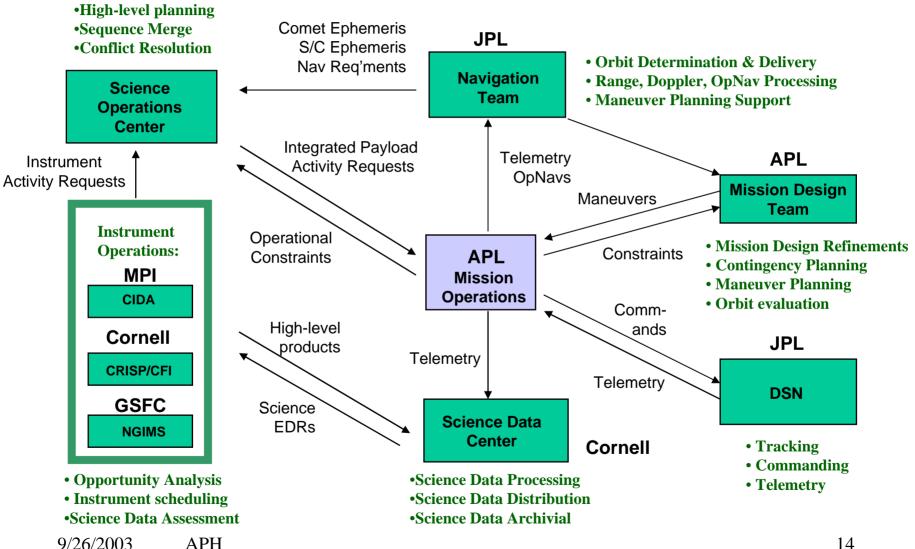
- CFI and CRISP activities focused at Cornell
- NGIMS activities focused at GSFC: results transmitted to SDC at Cornell
- CIDA activities focused at MPI-Garching: results transmitted to SDC at Cornell
- High degree of heritage from previous missions
 - CRISP/CFI will adapt proven software from NEAR MSI and NIS
 - NGIMS will adapt Cassini INMS software
 - CIDA will adapt software from STARDUST CIDA

Science Data Center

Data Distribution and Archiving

- Selected images and other data will be released to the public on Web as soon as possible after each flyby
- Calibrated data distributed near-real time to science team via Web
- Calibration papers planned for each instrument
- Schedule for archiving to PDS
 - File formats, keyword definitions (launch + 30 days)
 - Calibration papers (launch + 6 mo)
 - Instrument EDRs, calibration routines (Encke: Encounter + 9 mo, Others: Encounter + 6 mo)

Science Data Center


CONTOUR Data Volume

- Estimated at 4 Gbits / Encounter
 - CIDA \leq 0.5 Gbits
 - NGIMS \leq 0.3 Gbits
 - **CRISP/CFI** \cong 3.2 Gbits
- CIDA Team accustomed to handling such data volumes: Rosetta, Stardust
- NGIMS Team very experienced: Galileo, Cassini, etc.
- CRISP/CFI Cornell accustomed to handling voluminous imager/spectrometer data: NEAR MSI/NIS

Operational Interfaces and Responsibilities

