

1

CONTOUR Mission Operations

Mark Holdridge JHU/APL mark_holdridge@jhuapl.edu

<u>Agenda</u>

- Operational Requirements Division
- Operational Interfaces
- Operations Preparations
- Preparation Schedule
- Post Launch Operations

Science Operations Review October 2 & 3, 2000

Division of Operational Requirements

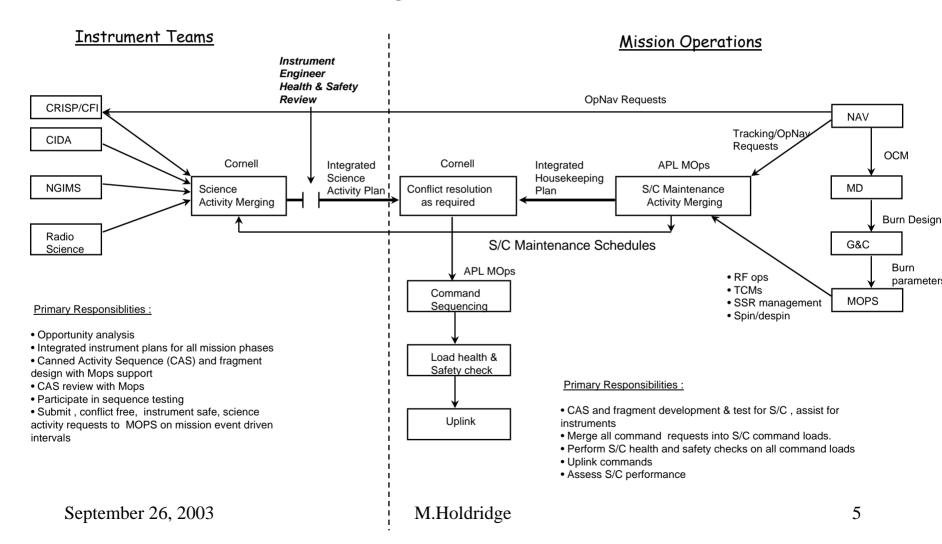
JHU/APL Requirements :

- Uplink of <u>all</u> commands
- Real-time S/C & Instrument Monitoring
- Planning of all S/C housekeeping activities (Buns, SSR ops ...)
- Merge Instrument & Housekeeping commands
- Command load review & testing
- Spacecraft health and safety (prime)
- Instrument health and safety check (secondary to instrument teams)
- DSN Scheduling
- Long Term S/C trending
- Post event S/C assessment and process improvement

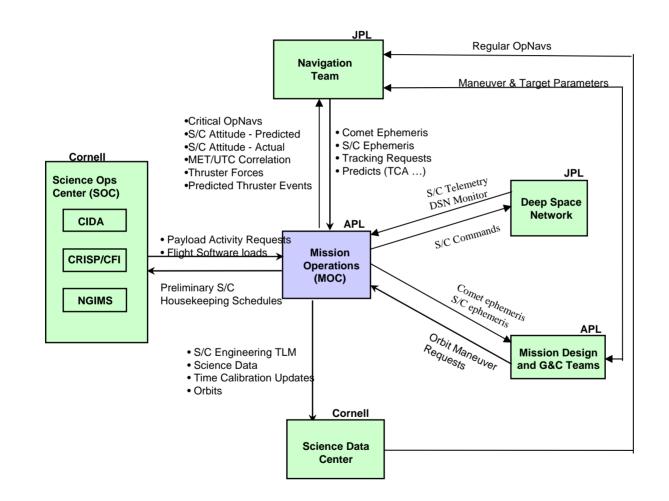
Science Operations Review October 2 & 3, 2000

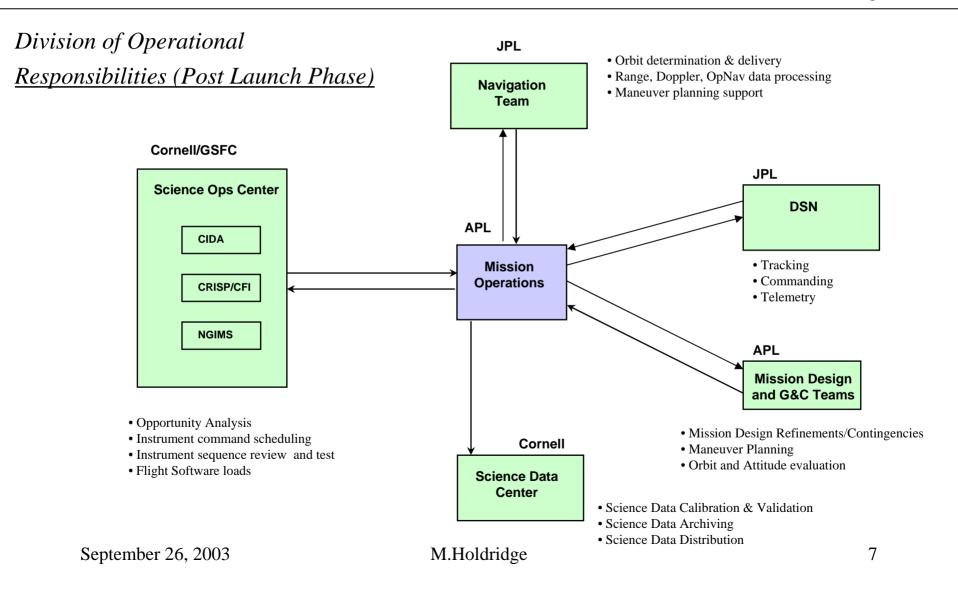
Planning & Scheduling

Science Team Requirements


- Plan and implement all instrument activities including calibrations
- Instrument activity command review, test, and delivery (SASF format)
- Development and delivery (TBD format) of flight software loads
- Instrument activity planning coordination conflict avoidance (i.e. CRISP vs. CIDA ops)
- Instrument health and safety checking
- Verify activities within spacecraft operating constraints ("smart requests")
 - Spacecraft health and safety (secondary)
- Timely delivery of instrument commands as per TBD delivery schedules
- Post event assessment and process improvement

Science Operations Review October 2 & 3, 2000


Planning Interfaces



Science Operations Review October 2 & 3, 2000

Science Operations Review October 2 & 3, 2000

Science Operations Review October 2 & 3, 2000

Prelaunch Operations

- Define planned instrument activities (activation, calibration, Encounter ...)
- Develop STOL procedures for Real-time operations (S/W loads, contingencies...)
- Develop reusable command blocks for activities initiated via onboard C&DH timetagged command sequences and macros.
 - Use Fragments defined to basic operations (On, Off, Mode changes ...)
 - Collect Fragments into Canned Activity Sequences (CAS) for more complex operations
 - Build 1 Launch and early operations
 - Build 2 Encounter operations
- Test STOL scripts and Seg_gen generated commands with CONTOUR spacecraft (as available) and simulators (Statesim and S/C Simulator).
- Test instrument flight software (CFI/CRISP DPU's, CIDA and NIGMS flight processors) with sequences developed

September 26, 2003

Science Operations Review October 2 & 3, 2000

Prelaunch Operations Continued

- Support testing of MOC, SOC, and CONTOUR interfaces, rehearsals
- Define and develop operating constraints/rules/models for load check process
- Integrate operating constraints/rules/models and command blocks into SEQ_GEN
- MOps to work with subsystem engineers to develop S/C user's Guide. Instrument teams are strongly encouraged to do the same for instrument operations (hint hint ...).
- Develop Spacecraft and Ground System Standard and Contingency Operating procedures for launch and cruise operations. Instrument contingency procedures also required to expedite instrument recovery and safeing.

Key Dependencies of Operations Preparations Schedule

- Instrument TLM & CMD Specifications
- Instrument TLM & CMD Database Definitions
- Ground & Flight Systems Availability :
 - Real-time MOC (Epoch 2000)
 - MOC Planning and Scheduling (Seq-Gen) Systems
 - Command "Glueware" between Epoch and Seq-Gen
 - Flight Software availability
 - CONTOUR Spacecraft Availability
 - CONTOUR Spacecraft Simulator Availability

Key Dates - Spacecraft and Ground System Development

Instrument Deliveries :

_	NIGMS Delivery	9/01
_	CIDA Delivery	9/01
_	CRISP Delivery	11/30/01
_	CFI Delivery to	11/01/01

S/C integration and Test:

- CIDA 9/14/01
- NIGMS 9/05/01
- CFI 11/02/01
- CRISP 12/03/01

S/C and Instrument Environmental Tests

1/29/02-5/03/02

September 26, 2003

Science Operations Review October 2 & 3, 2000

Proposed Schedule for Operations Preparations Proposed Dates

Instrument Activity and Operating Rule	3/01 - 4/01		
Definitions - Build 1 (Early operations)			
MOC Planning & Scheduling Initial Delivery	3/01 (desired)		
Instrument & S/C Flight Software Initial Delivery	3/01 (desired)		
(required for software simulator)			
Initial Command Database	3/01 (desired)		

Translate Build 1 Activities and Rules to Software4/01 - 6/01

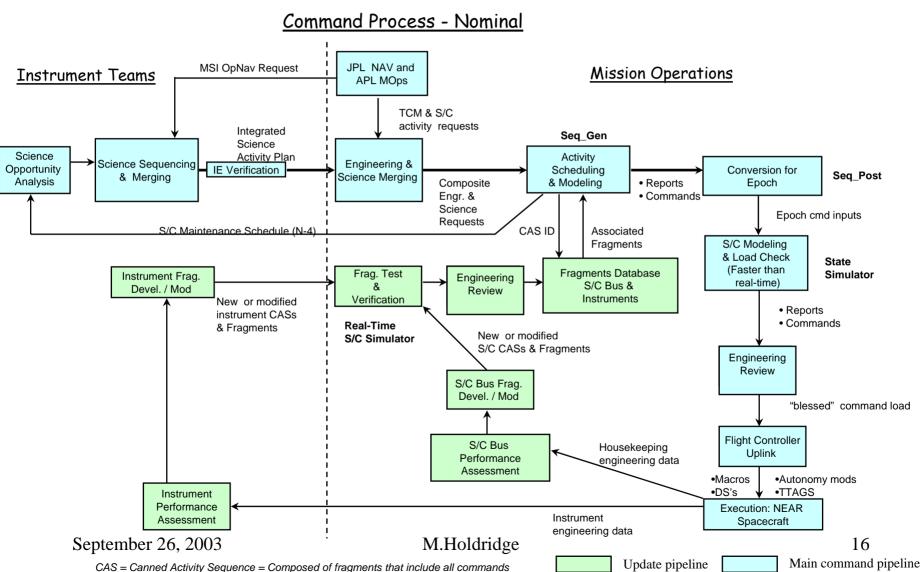
Instrument Activity and Operating Rule4/01 - 7/01Definitions - Build 2 (Encounter Operations)

Translate Build 1 Activities and Rules to Software	6/01 - 9/01
MOC S/C Software Simulator and MOC command processing Initial Delivery	l 8/01 (desired)
Command Block and Rule Testing w/Statesim	9/01 - 5/02 (desired)
Command Block and Rule Testing w/Flight hardware	9/01-5/02 (desired)
MOC/SOC Data Flow Simulations and Testing	11/01 - 5/01
Freeze Build 1 CAS, Frags, Rules	5/02

Key Dates - Post Launch Flight Operations

Launch7/01/02Phasing Orbits7/1-8/15/02SRM Firing8/15/02Instrument Checkouts7/01 - 10/01/02Hibernation Entry~10/01/02Complete Build 2 Sequence Creation & Test10/01/02 - 7/1/03Hibernation Exit/Encke (Build 2) Preparations~7/1/03

Science Operations Review October 2 & 3, 2000


Post-Launch Operations (non-hibernating)

- Refine and test reusable command blocks for encounter operations.
- Coordinate review and testing of command sequences (flight and ground)
- Perform necessary commanding via tested and approved command sequences
 - Δ V's, Spin Attitude Maneuvers
 - Housekeeping activities (SSR operations, Subsystem configuration control ...)
 - Encounter operations
- In close coordination with spacecraft engineering team, monitor critical spacecraft and instrument health and status parameters verses operating limits and timeline during real-time DSN supports. Instrument teams to monitor long term health of instrument.

Science Operations Review October 2 & 3, 2000

required to accomplish a given S/C activity/objective

Critical Command Loads

Definition: A critical spacecraft activity is defined as one that could pose a significant risk to the spacecraft or mission if its contents are not executed successfully on time (i.e., SRM Firing & Encounter).

Process: Put commands through all the same checks as a nominal load plus:

- Sequence Preliminary Design Review
- S/C Simulator end-to-end real-time testing
- Sequence modification
- Final command and simulator test results review
- Sequence final "go" / "no go" decision