

PDR

CONTOUR Science Sequencing

Ann Harch Cornell University October 2, 2000

ann@baritone.tn.cornell.edu

Roles of Science Scheduling Coordinator

WORK WITH MOPS AND SCIENCE TEAMS TO DEVELOP SEQUENCE GENERATION PROCESS:

- Want a process that fits needs of each instrument team as well as Mission Ops
- Responsibilities differ for each instrument

ASSIST WITH DEVELOPMENT OF SCIENCE SEQUENCING TOOLS:

- Provide feedback to CRISP/CFI/G&C command definition process, make sure that calibration and encounter activities as envisioned are commandable
- Support development and testing of SEQGEN CAS/Fragments, implementation of modeling and constraint checking in SEQGEN for all instruments
- Develop conceptual design for simulation and sequence generation s/w for CRISP/CFI which will include <u>guidance commanding</u>

Roles of Science Scheduling Coordinator

COORDINATE PLANNING OF ALL SCIENCE ACTIVITIES:

- Maintain cognizance over planning and execution of all science activities, including real-time commands, and in-flight tests.
- Interact with MOps for scheduling and integration of normal science activities, work instrument or operational conflicts and other operational issues
- Prepare schedules and timelines for science sequence development, and make sure we keep to deadlines (nag, nag, nag)

SEQUENCE DEVELOPMENT:

- Detailed design of observations for CRISP, CFI (includes OpNav)
- SEQGEN implementation of CIDA sequences
- Merge and run all instrument SEQGEN input files (CRISP, CFI, CIDA and NGIMS), coordinate reviews and correction of conflicts or constraint violations
- Deliver final sequences to MOps

Science Sequencing Processes

Normal Sequence Generation Process:

- Scheduling requests for science activities must be made to Mops via standard SEQGEN request file using approved CAS and Fragment blocks.
- How those files are created is at the discretion of each individual instrument team
- Final merge of all science instrument files and constraint check will occur at Cornell
- We are required to deliver a set of files (one for each instrument, or a merged file) that is conflict free and will not violate health and safety of s/c or any instrument.

Real-time Command Generation Process:

- Not defined yet
- Real-time commands will be generated by different process than above.
- Probably will not pass through SEQGEN process as described above. Instrument engineers probably will deliver these directly to MOC. SSC will be cognizant but not directly in the loop.

Science Sequence Generation Software => Two-step process

INSTRUMENT SEQUENCE GENERATION S/W:

- Instrument-specific software which assists with 'opportunity analysis', and also with generation of command sequences
- Unique for each instrument
- Ultimately must convert command sequences into standard SEQGEN sasf input file based on approved CAS/Fragment definitions

SEQGEN

- Project-maintained s/w, final validation of sequences, models s/c resource usage
- Graphical representation of instrument and engineering activities, DSN contacts, simulation of s/c resource use, etc
- May run with individual instrument input, all science instruments merged, or with engineering activities merged

Science Sequence Modeling & Constraint Checking

INSTRUMENT SEQUENCE GENERATION S/W

- May evaluate instrument health and safety
- May evaluate s/c health when pertinent (CRISP/CFI s/w will model s/c pointing)
- <u>Must</u> address the question of whether the activity makes sense (SEQGEN will not do this)
 - Validity of planned calibration or science activity
 - Will the commanded s/c pointing produce expected results?

SEQGEN and STATESIM

- In most cases, will evaluate instrument operating rules required to maintain instrument health
- Will evaluate spacecraft health and safety
- Will model common use resources (SSR usage, s/c commanding rates, pointing control)

<u>'Flyby':</u> CRISP/CFI Opportunity Analysis and Sequence Generation Software

- reads SPICE (comet and s/c ephemerides, etc)
- generates visual representation of comet and other targets, instrument FOVs
- simulates s/c pointing and CRISP mirror motion
- simulations generated by structures equivalent to defined CASs and Fragments for CRISP/CFI instrument operation and guidance & control commanding
- modeling and constraint check:
 - s/c pointing constraints
 - check that we are using valid CAS and fragments, parameters within range, but will not check instrument operating rules
 - quality of science return
- *output*:
 - archive request files for each observation, equivalent to CAS format
 - SEQGEN 'sasf' in standard format for input
 - image frame data files (viewing geometry, sun angles, s/c orientation, smear, etc)
 - plots

Science Activity Conflict Avoidance

SPACECRAFT POINTING:

- All s/c pointing for science operations will be commanded through the CRISP/CFI CASs
- Any conflict of desires among instruments for s/c pointing will be resolved before sequence generation and I will implement what ever is agreed upon
- SEQGEN will catch any pointing conflicts between science and engineering

SSR USAGE

- Allocations for each instrument will be distributed with ops guidelines for calibrations or encounter activities
- It is the responsibility of each instrument team to stay within those allocations
- SEQGEN modeling will check any violations

COMMANDING RATES

• SEQGEN modeling will flag any problems

Science Sequencing Process Definition - Where are we?

For CRISP, CFI and CIDA (including G&C commanding):

• Process proposed by Mops has been agreed to

For NGIMS

- NGIMS process still under discussion
- NGIMS team desires to circumvent SEQGEN if possible
- 'GSE' software can produce fully tested and checked sequences
- Encounter sequences can be loaded directly into instrument memory
- Probably can't eliminate SEQGEN completely from process, must somehow model common use resources (mainly SSR usage)

Operational Interfaces and Responsibilities

Science Team Roles for Sequence Generation

CRISP/CFI:

- Instrument Lead (Scott Murchie or tbd)
 - Create high-level observation desires
 - Iterate on design details with science coordinator
 - review SEQGEN sasf input file (will not operate SEQGEN)
- Science Scheduling Coordinator (Ann Harch)
 - Work scheduling and operational issues with MOC
 - Prepare and distribute activity development timelines
 - Create detailed sequence designs using local s/w
 - Work any s/c pointing issues with G&C engineers
 - Create SEQGEN sasf file for review
 - Merge with all instruments, coordinate review of final delivery files
- Instrument Engineer (Jeff Warren?)
 - Available for consultation during design of instrument activities
 - Review and approve final SEQGEN input files

CRISP/CFI Sequence Generation

Science Team Roles for Sequence Generation

CIDA:

- Instrument Lead (Jochen Kissel)
 - Create high-level observation desires using local opportunity analysis s/w
 - Iterate on design details with science coordinator
 - review SEQGEN sasf input file (will not operate SEQGEN)
- Science Scheduling Coordinator (Ann Harch)
 - Work scheduling and operational issues with MOC
 - Prepare and distribute activity development timelines
 - Create detailed sequence designs using SEQGEN
 - Create SEQGEN sasf file for review
 - Merge with all instruments, coordinate review of final delivery files
- Instrument Engineer (?)
 - Available for consultation during design of instrument activities
 - Review and approve final SEQGEN input files

CIDA Sequence Generation

Science Team Roles for Sequence Generation

NGIMS (Normal Activity Mode):

- Instrument Lead (Paul Mahaffy)
 - Create high-level observation desires, deliver to SSC
 - Create detailed sequence designs using local s/w, constraint check and model
 - Write to SEQGEN file (will operate SEQGEN), deliver to SSC
 - review SEQGEN sasf input file
- Science Scheduling Coordinator (Ann Harch)
 - Work scheduling and operational issues with MOC
 - Prepare and distribute activity development timelines
 - Receive final SEQGEN sasf file for review
 - Merge with all instruments, coordinate review of final delivery files
- Instrument Engineer (Mike Paulkovich)
 - Review and approve final SEQGEN input files

Science Team Roles for Sequence Generation

NGIMS (Encounter Activity Mode):

- Instrument Lead (Paul Mahaffy?)
 - Create high-level observation desires, deliver to SSC
 - Create detailed sequence designs using local s/w, constraint check and model
 - Deliver flight s/w upload to MOC (not through SEQGEN)
 - Write simplified SEQGEN request file that tracks instrument on, SSR usage (deliver to SSC)
 - review SEQGEN sasf input file
- Science Scheduling Coordinator (Ann Harch)
 - Work scheduling and operational issues with MOC
 - Prepare and distribute activity development timelines
 - Receive final SEQGEN sasf file for review
 - Merge with all instruments, coordinate review of final delivery files
- Instrument Engineer (Mike Paulkovich)
 - Review and approve final SEQGEN input files

NGIMS Sequence Generation

NGIMS Sequence Generation

