Ptolemy Flight Operations Plan for Cruise

 Document no.:
 RO-LPT-OU-PL-3114

 Issue:
 2.1

 Date:
 29 April 2005

 Page:
 1 of 33

MODULUS – Ptolemy

Ptolemy Experiment Flight Operation Plan for Cruise

Document no.: RO-LPT-OU-PL-3114 Issue: 2.1

Prepared by:	ANDREW MORSE	Date:	
Approved by:		Date:	
Authorised by:	SIMEON BARBER	Date:	

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent. ©The Open University 2005

Ptolemy Flight Operations Plan for Cruise

Document no.: RO-LPT-OU-PL-3114 Issue: 2.1

 Date:
 29 April 2005

 Page:
 2 of 33

CHANGE RECORD

DATE	CHANGE DETAILS	ISSUE
14 July 2004	Document created	1.0
16 July 2004	Document modified following QM tests	1.1
22 April 2005	Update document after successful completion of commissioning; includes revision of plans for Passive and Active checkouts, and outline plans for post-hibernation operations	2.0
29 April 2005	Addition of missing TC – Begin extended AFT	2.1

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.: RO-LPT-OU-PL-3114 Issue: 2.1

 Date:
 29 April 2005

 Page:
 3 of 33

TABLE OF CONTENTS

1		tion	
	1.1 Pur	pose	4
	1.2 Ref	erences	4
	1.3 Abb	Drev	5
2	Overview	w of Cruise Phase Operations	6
	2.1 Pas	sive Checkout Operations	7
	2.1.1	Payload Checkout #0 (Passive)	
	2.1.2	Default sequence for Passive Payload Checkouts	7
		ive Checkout Operations	9
	2.3 Swi	ng-bys and Flybys	11
	2.3.1	Swing-bys	11
	2.3.2	Flybys	
	2.4 Pos	t-hibernation operations	
	2.4.1	Health checks and dynamic pre-operations	
	2.4.2	Comet Atmosphere Sampling Experiment (CASE)	
		nmary of Ptolemy operations in Cruise and Post-hibernation phases	
3			
4		lemory results	
5		nal modes description	
		erview of Ptolemy Operational Modes	
		de Descriptions	
	5.2.1	Ptolemy Off / Hibernate Mode	
	5.2.2	Safe Mode	
	5.2.3	Standby Mode	
	5.2.4	Science Modes	
6		mands	
		ecommand description	
	6.1.1	Load_memory – Patch one or more blocks of memory	
	6.1.2	Check_memory – Perform checksum over one or more blocks of memory	
	6.1.3	Copy_memory – Copy memory from one block to another	
	6.1.4	Start_standby - Select Instrument mode - Start standby from safe mode	
	6.1.5	Select_Post_Launch - Select Instrument mode - Post Launch	
	6.1.6	Select_Cruise_Phase - Select Instrument mode - Cruise Phase	
	6.1.7	Select_Safe_Mode - Select Instrument mode - Return to safe Mode	
	6.1.8	Hazardous_Function_Enable – Enable/disable hazardous functions	
	6.1.9	Parameter_Update – Update Software Parameters	33

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.: RO-LPT-OU-PL-3114 Issue: 2.1
 Date:
 29 April 2005

 Page:
 4 of 33

1 Introduction

1.1 Purpose

This document defines inputs for operation of the Lander instrument MODULUS-Ptolemy during cruise phases. This document describes qualitatively the operation modes and the general timeline, i.e. the sequence of activities during the commissioning phase of the ROSETTA mission. In addition, the requirements concerning common or sequential operations with respect to other Lander subsystems and/or experiments, are outlined.

The detailed calculation of the resource requirements (power) and the delivered data volume is given along with a comprehensive list of telecommands (where applicable) or the list of parameters that will enable the determination of the telecommands to be used during this phase of operations.

In addition, because Cruise phase operations are naturally a precursor to later mission operations, an outline of post-hibernation phase operations is provided in section 2.4 for contextual reasons.

	Reference	Title	Issue	Date
RD1	RO-LPT-OU-PL-3101	Ptolemy Operations Plan	2.4	06/04/2001
RD2	RO-LPT-RAL-TN-3403	Ptolemy Telecommand and	5.1	26/02/2001
		Telemetry Definitions		
RD3	RO-LPT-OU-DP-3205	Ptolemy FM ADP	1.0	01/12/2000
RD4	RO-EST-RS-3001/EID A	Rosetta EID A	2.0	01/06/1999
RD5	RO-LPT-OU-PL-3108	Ptolemy Operations Plan Mode	1.0	04/09/2002
		Description: Cruise Phase Mode		
RD6	RO-LPT-OU-PL-3112	Ptolemy Operations Plan:	1.0	13/07/2004
		Initialisation sequences		
RD7	RO-LPT-OU-PL-3113	Ptolemy Operations Plan Mode	1.0	05/07/2004
		Description: Extended AFT		
		(Limited Cruise Phase)		
RD8	RO-LPT-OU-PL-3105	Ptolemy Operations Plan for	2.2	30/09/2002
		Commissioning and Cruise		

1.2 References

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.: RO-LPT-OU-PL-3114 Issue: 2.1

 Date:
 29 April 2005

 Page:
 5 of 33

1.3 Abbrev.

Abbrev.	Abbreviations
Ack	Acknowledgement
CDMS	(Lander) Command and Data Management System
CRC	Cyclic Redundancy Check
LS	Least Significant
MS	Most Significant
PUS	Packet Utilisation Standard
TBC	To Be Confirmed
TBD	To Be Defined
TC	Telecommand

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.: RO-LPT-OU-PL-3114 Issue: 2.1
 Date:
 29 April 2005

 Page:
 6 of 33

2 Overview of Cruise Phase Operations

The Rosetta spacecraft was successfully launched on 2nd March 2004 at which point the mission event timeline became well defined. The precision in which the Rosetta spacecraft was placed on its interplanetary orbit has resulted in sufficient reserve fuel for it to be targeted for two asteroid flybys (Steins and Lutetia) on its 10 year journey to comet 67P Churyumov-Gerasimenko.

The commissioning phase started soon after launch and consisted of four separate blocks. During this phase Ptolemy modes were performed to check that the instrument had survived the rigours of launch and perform interactive tests with SD2 (the sample carousel), ÇIVA (microscope cameras) and COSAC (GC-MS).

The Rosetta Cruise Phase lasts for six years and consists of a checkout (passive or active) at approximately six month intervals. During this period there are also planet swingbys and two asteroid flybys. The mission timeline for the cruise phase is shown in the table below.

Event	Duration		Date
Earth Swingby #1			04-Mar-05
P/L Checkout 0	5d	Passive	27-Mar to 31-Mar-05
P/L Checkout 1	5d	Passive	03-Oct to 07-Oct-05
P/L Checkout 2	5d	Passive	06-Mar to 10-Mar-06
P/L Checkout 3	5d	Passive	28-Aug to 01-Sep-06
P/L Checkout 4	25d	Active	27-Nov to 21-Dec-06
Mars Swing-by			25-Feb-07
P/L Checkout 5	5d	Passive	21-May to 25-May-07
P/L Checkout 6	15d	Active	17-Sep to 01-Oct-07
Earth Swing-by #2			13-Nov-07
P/L Checkout 7	5d	Passive	07-Jan to 11-Jan-08
P/L Checkout 8	25d	Active	07-Jul to 31-Jul-08
Steins Flyby			05-Sep-08
P/L Checkout 9	5d	Passive	02-Feb to 06-Feb-09
P/L Checkout 10	15d	Active	21-Sep to 05-Oct-09
Earth Swing-by #3			13-Nov-09
P/L Checkout 11	5d	Passive	07-Dec to 11-Dec-09
P/L Checkout 12	25d	Active	10-May to 03-Jun-10
Lutetia Flyby			10-Jul-10
P/L Checkout 13	5d	Passive	6-Dec to 10-Dec-10

During passive checkouts there is no (or very limited) interaction between the spacecraft and ground control. Sequences are controlled by mission timeline events and the data returned at the completion of the checkout which can be several days later. Active checkouts are similar to the commissioning phase in which TCs can be sent from ground control and decision points acted upon during the checkout.

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.: RO-LPT-OU-PL-3114 Issue: 2.1
 Date:
 29 April 2005

 Page:
 7 of 33

2.1 Passive Checkout Operations

Passive checkouts are performed offline; there is no interaction between ground control and the instruments during the checkout.

The operation sequence for Ptolemy during passive checkouts has the following constraints:

- i) The time available for each instrument is 10-20 minutes
- ii) There can be no decision points

2.1.1 Payload Checkout #0 (Passive)

During P/L checkout 0 (Passive), Ptolemy performed the following actions:

- i) Ptolemy Extended AFT
- ii) Check memory TCs
- iii) Ptolemy Cruise phase mode (to check a sequence modification).

A constraint with the check memory TCs is that the results are returned within Ptolemy House Keeping (HK) packets where each Ptolemy HK can contain a maximum of three check memory TC results. During normal operation the CDMS collects one Ptolemy HK packet every four minutes. Therefore during payload Checkout #0 (Passive), after the Check Memory TCs, whilst waiting for the check memory results, the opportunity was taken to run Cruise phase mode in order to check a sequence modification.

2.1.2 Default sequence for Passive Payload Checkouts

The realisation that CDMS can be requested to collect 2 HK packets immediately means that the default sequence for Ptolemy during Passive checkouts can be optimised, by first performing the memory checks, then commanding CDMS to request the results, then running the Ptolemy Extended AFT.

The Ptolemy requirements for P/L checkout 1 (and hopefully all future P/L checkouts) are:

- i) Check memory TCs
- ii) CDMS to request 2 Ptolemy HK packets 5 times.
- iii) Ptolemy Extended AFT

Note that two of the check memory TCs have been updated since issue 1.1 of this current document.

The TC timing sequence is shown in the table below.

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.: RO-LPT-OU-PL-3114 Issue: 2.1

 Date:
 29 April 2005

 Page:
 8 of 33

TC	Time	Duration	TM rate (bit/s)		Ave.	Task name / Comments	
	(s)	(s)	Science	HK	power (W)		
Switch on Ptolemy	TS1	15	0	8	4.0	Switch on Ptolemy	
Copy memory PID	TS1+15	15	0	8	4.0	Initialisation 1 Sequence	
Check memory PID	TS1 + 13 TS1 + 30	15	0	8	4.0	Initialisation 1 Sequence	
Start Standby (Initialisation)	TS1 + 30 TS1 + 45	15	0	8	4.0		
Update Parameter - Flexible	TS1 + 43 TS1 + 60	15	0	8	4.0		
Safe mode	TS1 + 00 TS1 +75	15	0	8	4.0		
Check memory Post Launch Mode	TS1 + 75 TS1 + 90	15	0	8	4.0	Check memory TCs	
Check memory Cruise Mode	TS1 + 90 TS1 + 105	15	0	8	4.0	Check memory ICs	
Check memory Instrument Check-out	TS1 + 103 TS1 + 120	15	0	8	4.0		
Check memory HTO Conditioning	TS1 + 120 TS1 + 135	15	0	8	4.0		
Check memory MTO Conditioning	TS1 + 135 TS1 + 150	15	0	8	4.0		
	TS1 + 150 TS1 + 165	15	0	8	4.0		
Check memory CASE Conditioning Check memory Survival Evaluation	TS1 + 165 TS1 + 180	15	0	8	4.0		
		-	-	-			
Check memory He Tank Rupture	TS1 + 195	15	0	8	4.0		
Check memory Dynamic Pre-	TS1 + 210	15	0	8	4.0		
operations Check memory Calibration	TS1 + 225	15	0	8	4.0		
2		-	-	-	4.0		
Check memory Ice Core Anal. (HTO)	TS1 + 240	15	0	8			
Check memory Atmosphere Analysis	TS1 + 255	15	0	8	4.0		
Check memory Silicate Analysis	TS1 + 270	15	0	8	4.0		
Check memory Ice Core Anal.(MTO)	TS1 + 285	15	0	8	4.0		
Check memory Additional Science	TS1 + 300	15	0	8	4.0		
Check memory Op Limits (1)	TS1 + 315	15	0	8	4.0		
Check memory Ion Trap tables	TS1 + 330	15	0	8	4.0		
Check memory Extended AFT	TS1 + 345	15	0	8	4.0		
Check memory Patch3	TS1 + 360	15	0	8	4.0		
CDMS to request 2 Ptolemy Fast HK packets x5	TS1 + 375	60	0	8	4.0	Wait to acquire HK packets	
•							
Start Standby (Cruise Phase)	TS1 + 435	15	0	8	4.0	Prepare for Cruise Phase Mode	
Update Parameter – Extended AFT	TS1 + 450	15	0	8	4.0		
Hazard Enable Cruise Phase	TS1 + 465	15	0	8	4.0		
Begin Extended AFT	TS1 + 480	360	60	8	6.2	<i>Extended AFT</i> 8 Science packets generated	
Safe mode	TS1 + 840	15	0	8	4.0	Safe mode	
Sale mode							

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.: RO-LPT-OU-PL-3114 Issue: 2.1
 Date:
 29 April 2005

 Page:
 9 of 33

2.2 Active Checkout Operations

There are a total of five active checkouts before the beginning of the Rosetta hibernation phase. The availability of decision points during an active checkout enables a complete checkout of the instrument including the mass spectrometer.

The overall aim is to be able to operate the Ptolemy Mass Spectrometer Checkout mode during the final active checkout before hibernation (P/L checkout 12). However, detailed sequence for this mode is still being tested on the Ptolemy Qualification model. The main concern is determining the optimum operation of the mass spectrometer electron source to preserve its operational lifetime. In order to allow contingency it is preferable to first perform the mass spectrometer checkout mode during an early Active checkout. This would allow time for software modification and a repeat test during the intervening active checkouts if necessary. A provisional schedule is shown below.

Event	Duration	Mode	Date	Proposed Ptolemy	Notes
P/L Checkout 4	25d	Active AC1	27.11. – 21.12.2006	activity Check Memory Cruise Phase Mode Mass Spectrometer Checkout	Plus support COSAC/SD2 test? (TBC)
P/L Checkout 6	15d	Active AC2	17.09. – 01.10.2007	Check Memory Cruise Phase Mode Post Launch mode	i.e. trapped gas test, plus contingency for Ptolemy Mass Spectrometer test
P/L Checkout 8	25d	Active AC3	07.07. – 31.07.2008	Check Memory Cruise Phase Mode Sequences upload	Contingency for Ptolemy Mass Spectrometer test
P/L Checkout 10	15d	Active AC4	21.09. – 05.10.2009	Check Memory Cruise Phase Mode Mass Spectrometer Checkout	
P/L Checkout 12	25d	Active AC5	10.05. – 03.06.2010	Check Memory Cruise Phase Mode Mass Spectrometer Checkout	Final MS run-through, with no decision points

The actions for Ptolemy active checkouts will be:

- i) If necessary, load any software patches and mode sequence tables
- ii) Memory check TCs
- iii) Ptolemy Cruise phase mode
- iv) Other operational modes (to be defined)

It is envisaged that as a default, the memory check TCs and Cruise phase mode will always be performed. The TC sequence for this is shown below. As it is likely that each active checkout will be different, a separate document will be produced for each active checkout as required.

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.: RO-LPT-OU-PL-3114 **Issue:** 2.1 Date:29 April 2005Page:10 of 33

Ptolemy active checkout default TC sequence

тс	Time	Duration	TM rate (b	oit/s)	Ave.	Task name / Comments	
	(s)	(s)	Science	НК	power (W)		
					1.0		
Switch on Ptolemy	TS1	15	0	8	4.0	Switch on Ptolemy	
Copy memory PID	TS1+15	15	0	8	4.0	Initialisation 1 Sequence	
Check memory PID	TS1 + 30	15	0	8	4.0		
Start Standby (Initialisation)	TS1 + 45	15	0	8	4.0		
Update Parameter - Flexible	TS1 + 60	15	0	8	4.0		
Safe mode	TS1 +75	15	0	8	4.0		
Check memory Post Launch Mode	TS1 + 90	15	0	8	4.0	Check memory TCs	
Check memory Cruise Mode	TS1 + 105	15	0	8	4.0		
Check memory Instrument Check-out	TS1 + 120	15	0	8	4.0		
Check memory HTO Conditioning	TS1 + 135	15	0	8	4.0		
Check memory MTO Conditioning	TS1 + 150	15	0	8	4.0		
Check memory CASE Conditioning	TS1 + 165	15	0	8	4.0		
Check memory Survival Evaluation	TS1 + 180	15	0	8	4.0		
Check memory He Tank Rupture	TS1 + 195	15	0	8	4.0		
Check memory Dynamic Pre-	TS1 + 210	15	0	8	4.0		
operations							
Check memory Calibration	TS1 + 225	15	0	8	4.0		
Check memory Ice Core Anal. (HTO)	TS1 + 240	15	0	8	4.0		
Check memory Atmosphere Analysis	TS1 + 255	15	0	8	4.0		
Check memory Silicate Analysis	TS1 + 270	15	0	8	4.0		
Check memory Ice Core Anal.(MTO)	TS1 + 285	15	0	8	4.0		
Check memory Additional Science	TS1 + 300	15	0	8	4.0		
Check memory Op Limits (1)	TS1 + 315	15	0	8	4.0		
Check memory Ion Trap tables	TS1 + 330	15	0	8	4.0		
Check memory Extended AFT	TS1 + 345	15	0	8	4.0		
Check memory Patch3	TS1 + 360	15	0	8	4.0		
CDMS to request 2 Ptolemy Fast HK packets x5	TS1 + 375	60	0	8	4.0	Wait to acquire HK packets	
Start Standby (Cruise Phase)	TS1 + 435	15	0	8	4.0	Prepare for Cruise Phase Mode	
Update Parameter – RF word	TS1 + 450	15	0	8	4.0		
Hazard Enable Cruise Phase	TS1 + 465	15	0	8	4.0		
Begin Cruise Phase Mode	TS1 + 480	840	20	8	10.3	Cruise Phase Mode 8 Science packets generated	
Safe mode	TS1 + 1320	520	0	8	4.0	Safe mode	
Switch off Ptolemy	TS1 + 1840	0	0	0		Wait for 2HK packets before switching off.	

The following sequence is used to load new sequences and patches onto Ptolemy EEPROM

Load New Sequence

ТС	Time	Duration	TM rate (bit/s)		Ave.	Task name / Comments
	(s)	(s)	Science	НК	power (W)	
Switch on Ptolemy	TS3	15	0	8	4.0	Switch on Ptolemy
Load memory TC (1)	TS3 + 15	15	0	8	4.0	Load n memory TC's
Load memory TC (2)	TS3 + 30	15	0	8	4.0	
:	:	:	0	8	4.0	
:	:	:	0	8	4.0	
:	:	:	0	8	4.0	

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.: RO-LPT-OU-PL-3114 Issue: 2.1 Date:29 April 2005Page:11 of 33

Load memory TC (n)	TS3 + n*15	15	0	8	4.0	
Check memory of new sequence	Tx	512	0	8		<i>Check memory loaded</i> Wait for check memory results
Switch off Ptolemy	Tx + 512	0				

Tx = TS3 + n*15 + 15, where n is the number of load memory TC's.

2.3 Swing-bys and Flybys

2.3.1 Swing-bys

The Rosetta spacecraft uses Swing-by events to gain momentum and achieve course changes on its journey towards the comet. During the Swing-by events the overriding priority is achieve the desired manoeuvres so that the spacecraft remains on course. However there are opportunities for instruments to perform scientific experiments, calibration sequences and/or upload software.

As Ptolemy requires gas samples there are no scientific experiments planned during the Swingby events. The Earth Flyby events are a good opportunity to upload new mode sequences and any software patches. In which case these should be followed by the TC memory checks and Extended AFT (see 2.1 Passive Cruise Operations).

2.3.2 Flybys

There are two asteroid flybys, Lutetia and Steins, during the ten year cruise to the comet; this is a part of the Rosetta scientific objective. Ptolemy has no remote sensing capabilities at asteroids so its only mission requirement is for safe passage past the asteroids.

Ptolemy could use the asteroid flyby events to upload mode sequences and any software patches and further instrument characterisation provided this does not interfere with other instrument scientific constraints. If Ptolemy is switched on then it should be followed by the TC memory checks and Extended AFT (see 2.1 Passive Cruise Operations).

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.: RO-LPT-OU-PL-3114 Issue: 2.1 Date:29 April 2005Page:12 of 33

2.4 Post-hibernation operations

Operations to be undertaken after the spacecraft awakes from hibernation are still TBC. However we outline here the Ptolemy operations that are necessary before touchdown on the comet surface, and we raise the possibility of recovering some of the lost Berenice science through the use of the Ptolemy CASE (Comet Atmosphere Sampling Experiment).

2.4.1 Health checks and dynamic pre-operations

After hibernation, and prior to Lander separation, it is necessary to run a full Ptolemy health check (including Cruise Phase Mode, Post-launch mode, Mass Spectrometer checkout) and also to run Dynamic pre-operations (open gas tank).

2.4.2 Comet Atmosphere Sampling Experiment (CASE)

The CASE study involves analysing volatiles evolved from the comet by trapping them onto a material contained in a Ptolemy oven.

In detail, the oven would first be heated to clean it, then a "blank" experiment would be performed -i.e. we would run the CASE sequence without any comet gas trapped on the oven. At the end of the "blank" run the oven would be clean, and it would be left to collect comet atmosphere for some time (weeks or months). Then we would repeat the CASE experiment run would be repeated to analyse the gases trapped on the adsorbent material.

We wish to explore (with the Lander, orbiter...) the possibility of running the CASE experiment at an appropriate point (perhaps during the Global Mapping phase?). As a pre-requisite to the CASE experiment, dynamic pre-operations must have been performed and its success verified.

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

 Document no.:
 RO-LPT-OU-PL-3114

 Issue:
 2.1

Date:29 April 2005Page:13 of 33

2.5 Summary of proposed Ptolemy operations in Cruise and Posthibernation phases

Proposed Ptolemy operations are summarised in the table below. Note that post-hibernation operations are still very much TBC.

Event	Duration	Mode	Date	Proposed Ptolemy activity	Notes
Earth Swing-by #1			04.03.2005	None	
P/L Checkout 0	5d	Passive PC1	27.03. – 31.03.2005	Extended AFT Cruise Phase mode Check Memory	(Extended AFT is also known as Limited Cruise Mode)
P/L Checkout 1	5d	Passive PC2	03.10. – 07.10.2005	Check Memory EAFT	Proposed default operations for Passive Checkout
P/L Checkout 2	5d	Passive PC3	06.03. – 10.03.2006	Check Memory EAFT	
P/L Checkout 3	5d	Passive PC4	28.08. – 01.09.2006	Check Memory EAFT	
P/L Checkout 4	25d	Active AC1	27.11. – 21.12.2006	Check Memory Cruise Phase Mode Mass Spectrometer Checkout	Plus support COSAC/SD2 test? (TBC)
Mars Swing-by			25.02.2007	None	
P/L Checkout 5	5d	Passive PC5	21.05. – 25.05.2007	Check Memory EAFT	
P/L Checkout 6	15d	Active AC2	17.09. – 01.10.2007	Check Memory Cruise Phase Mode Post Launch mode	i.e. trapped gas test, plus contingency for Ptolemy Mass Spectrometer test
Earth Swing-by #2			13.11.2007	TBC	Opportunity to upload sequences / patches
P/L Checkout 7	5d	Passive PC6	07.01. – 11.01.2008	Check Memory EAFT	
P/L Checkout 8	25d	Active AC3	07.07. – 31.07.2008	Check Memory Cruise Phase Mode Sequences upload	Contingency for Ptolemy Mass Spectrometer test
Steins Flyby			05.09.2008	TBC (TBC)	Opportunity to upload sequences / patches
P/L Checkout 9	5d	Passive PC7	02.02. – 06.02.2009	Check Memory EAFT	
P/L Checkout 10	15d	Active AC4	21.09. – 05.10.2009	Check Memory Cruise Phase Mode Mass Spectrometer Checkout	
Earth Swing-by #3			13.11.2009	None (TBC)	Opportunity to upload sequences / patches
P/L Checkout 11	5d	Passive PC8	07.12. – 11.12.2009	Check Memory EAFT	
P/L Checkout 12	25d	Active AC5	10.05. – 03.06.2010	Check Memory Cruise Phase Mode Mass Spectrometer Checkout	Final MS run-through, with no decision points
Lutetia Flyby			10.07.2010	None (TBC)	
P/L Checkout 13	5d	Passive PC9	06.12. – 10.12.2010	Check Memory EAFT	
RVM #1			23.01.2011	None	
Deep Space Hibernation			14.07.2011 22.01.2014	None	
Comet Approach			Jan-May 2014	TBC	Ideally, full instrument checkout: Cruise Phase Mode, Post-launch mode, Mass Spectrometer checkout

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.: RO-LPT-OU-PL-3114 **Issue:** 2.1

 Date:
 29 April 2005

 Page:
 14 of 33

			Dynamic pre-operations (open gas tank)
RVM #2	May 2014	None	
Global Mapping / Pre-separation phase	Aug-Sep 2014	TBC	Dynamic pre-operations Ptolemy CASE blank run Ptolemy CASE experiment
Lander Delivery	Nov 2014	Primary Science; Extended mission	
Perihelion Passage	Aug 2015		

Items highlighted are still very much TBC

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.:	RO-LPT-OU-PL-3114	Date:	29 April 2005
Issue:	2.1	Page:	15 of 33

3 TC List

This section lists all of the TCs described in this document..

Begin C	Cruise Pha 1F3C	ase Mode E203	0005	10C1	0300	3975		
Begin E	1F3C	AFT E205	0005	10C1	0300	9850		
Check M	Memory 1 1F3C 0084	PID F001 0008	0013 246C	1006 0090	0900 0E64	9802	0008	2364
Check M	Memory 1 1F3C 0100 1600	Post Laur F100 0005 0100	nch Mode 0025 1200 0005	1006 0100 1800	0900 0005 0020	9705 1400 C087	0005 0100	1000 0005
Check M	Memory (1F3C 0060 2240	Cruise M F200 0005 0060	ode 0025 20C0 0005	1006 0060 2300	0900 0005 004C	9705 2180 3848	0005 0060	2000 0005
Check M	Memory 1 1F3C 0100 3600	Instrumer F300 0005 0100	nt Checko 0025 3200 0005	out 1006 0100 3800	0900 0005 0100	9705 3400 EA43	0005 0100	3000 0005
Check M	Memory 1 1F3C 0100 4600	HTO Cor F400 0005 0100	nditioning 0025 4200 0005	1006 0100 4800	0900 0005 0100	9705 4400 3A21	0005 0100	4000 0005
Check M	Memory 1 1F3C 0100 5600	MTO Cor F500 0005 0100	nditionin; 0025 5200 0005	1006 0100 5800	0900 0005 0100	9705 5400 ACFA	0005 0100	5000 0005
Check M	Memory (1F3C 0100 6600	CASE Co F600 0005 0100	onditionir 0025 6200 0005	^{lg} 1006 0100 6800	0900 0005 0100	9705 6400 07B6	0005 0100	6000 0005
Check M	Memory S 1F3C 0100 7600	Survival 1 F700 0005 0100	Evaluatio 0025 7200 0005	n 1006 0100 7800	0900 0005 0100	9705 7400 916D	0005 0100	7000 0005

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.:	RO-LPT-OU-PL-3114	Date:	29 April 2005
Issue:	2.1	Page:	16 of 33

Check]	Memory 1 1F3C 0100 8600	Helium T F800 0005 0100	ank Rup 0025 8200 0005	ture 1006 0100 8800	0900 0005 0100	9705 8400 B753	0005 0100	8000 0005
Check I	Memory 1 1F3C 0100 9600	Dynamic F900 0005 0100	Pre-oper 0025 9200 0005	ations 1006 0100 9800	0900 0005 0100	9705 9400 2188	0005 0100	9000 0005
Check I	Memory 1F3C 0100 A600	Calibratio FA00 0005 0100	on 0025 A200 0005	1006 0100 A800	0900 0005 0100	9705 A400 8AC4	0005 0100	A000 0005
Check]	Memory 1 1F3C 0100 B600	Ice Core FB00 0005 0100	Analysis 0025 B200 0005	(HTO) 1006 0100 B800	0900 0005 0100	9705 B400 1C1F	0005 0100	B000 0005
		Atmosph changed FC00 0005 0100			0900 0005 0100	9705 C400 CC7D	0005 0100	C000 0005
Check I	Memory 3 1F3C 0100 D600	Silicate A FD00 0005 0100	Analysis 0025 D200 0005	1006 0100 D800	0900 0005 0100	9705 D400 5AA6	0005 0100	D000 0005
Check 1	Memory 1 1F3C 0100 E600	Ice Core FE00 0005 0100	Analysis 0025 E200 0005	(MTO) 1006 0100 E800	0900 0005 0100	9705 E400 F1EA	0005 0100	E000 0005
(NB thi	s TC has	Additiona changed FF00 0005 0100	since iss	ue 1.1)	0900 0005 0100	9705 F400 6731	0005 0100	F000 0005
Check Memory Ion Trap Tables (NB this TC has changed since RD8)								
	1F3C 0400 3200	F005 0004 0400	0025 1200 0004	1006 0400 4200	0900 0004 0400	9705 2200 9115	0004 0400	0200 0004

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.:	RO-LPT-OU-PL-3114	Date:	29 April 2005
Issue:	2.1	Page:	17 of 33

Check M	Memory 0 1F3C 0048 3000	Op Limit F006 0004 0048	s (1) 0025 1000 0004	1006 0048 4000	0900 0004 0048	9705 2000 8741	0004 0048	0000 0004
		Op Limit changed F007 0004 0048		08) 1006 0048 9000	0900 0004 0048	9705 7000 30FF	0004 0048	5000 0004
		Op Limit changed F008 0004 0048		08) 1006 0048 E000	0900 0004 0048	9705 C000 889B	0004 0048	A000 0004
Check M	Memory (1F3C 0048	Op Limit F009 F07E	s (4) 000D	1006	0900	9701	0004	F000
Check N	Memory 1 1F3C 0080 2700	Extended F201 0005 0034	AFT 001F 2500 8E94	1006 0080	0900 0005	9704 2600	0005 0080	2400 0005
Check M	Memory 1 1F3C 0100	Patch3 F011 0007	0019 0440	1006 0100	0900 0007	9703 0640	0007 007B	0240 04D6
Сору М	lemory P 1F3C 0008 4CCD	ID F000 2364	001B 0084	10C0 0007	0100 0108	0002 0008	0007 246C	0000 0084
Hazard	Enable (1F3C 7945	Cruise Ph E202	ase) 000B	10C2	0100	7FFF	FBFF	0000
Parame	ter Updat 1F3C 2400	te – Exter E204 856D		10C3	0100	1FEA	0002	0005
Parame	ter Updat 1F3C 6FE9	te – Flexi F003			0100	85DC	0001	0000

Parameter Update - RF Word

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Docur Issue:	nent no.:	RO-Ll 2.1	PT-OU-P	L-3114				Date: Page:	29 April 2005 18 of 33
	1F3C A2E0	E201	000B	10C3	0100	284E	0001	0900	
Safe M	ode 1F3C	F004	0005	10C1	FF00	C48F			
Start St	andby (C 1F3C A744	ruise Pha E200	ase) 000B	10C1	0000	0001	0000	0000	
Start St	andby (Ir 1F3C 1DB7	nitialisati F002	on) 000B	10C1	0000	0001	0000	0000	

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

 Document no.:
 RO-LPT-OU-PL-3114

 Issue:
 2.1

Date:29 April 2005Page:19 of 33

4 Check Memory results

The expected results of the check memory TCs are shown below:

TC Name	Memory	Address	Number of	Expected Memory
	Page	Offset	words (hex)	Checksum
Check Memory PID	0008	2364	0084	0000
Check Memory ThD	0008	2304 246C	0090	090F
Check Memory Post Launch	0005	1000	0100	0501
Check Memory Post Launch	0005	1200	0100	BD7B
	0005	1200	0100	28CE
	0005	1400	0100	0200
	0005	1800	0100	5CED
Chaol: Momory Cruice Phase	0005	2000	0020	AA93
Check Memory Cruise Phase	0005	2000 20C0	0060	
				7A96
	0005	2180	0060	DD92
	0005	2240	0060	93FB
	0005	2300	004C	5A55
Check Memory Instrument Check-out	0005	3000	0100	03B2
	0005	3200	0100	0000
	0005	3400	0100	0000
	0005	3600	0100	0000
	0005	3800	0100	0000
Check Memory HTO Conditioning	0005	4000	0100	0000
	0005	4200	0100	0000
	0005	4400	0100	0000
	0005	4600	0100	0000
	0005	4800	0100	0000
Check Memory MTO Conditioning	0005	5000	0100	0000
	0005	5200	0100	0000
	0005	5400	0100	0000
	0005	5600	0100	0000
	0005	5800	0100	0000
Check Memory CASE Conditioning	0005	6000	0100	0000
	0005	6200	0100	0000
	0005	6400	0100	0000
	0005	6600	0100	0000
	0005	6800	0100	0000
Check Memory Survival Evaluation	0005	7000	0100	0000
•	0005	7200	0100	0000
	0005	7400	0100	0000
	0005	7600	0100	0000
	0005	7800	0100	0000
Check Memory Helium Tank Rupture	0005	8000	0100	32FD
· ·	0005	8200	0100	0000
	0005	8400	0100	0000
	0005	8600	0100	0000
	0005	8800	0100	0000
Check Memory Dynamic Pre-operations	0005	9000	0100	1792
	0005	9200	0100	0000
	0005	9400	0100	0000
	0005	9600	0100	0000
	0005	9800	0100	0000
Check Memory Calibration	0005	A000	0100	1262
Cheek Inemory Cunoration	0005	A200	0100	0000
	0005	A400	0100	0000
	0005	A400 A600	0100	0000

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.: RO-LPT-OU-PL-3114 Issue: 2.1
 Date:
 29 April 2005

 Page:
 20 of 33

	0005	A800	0100	0000
Check Memory Ice Core Analysis (HTO)	0005	B000	0100	F047
check wentby lee cole rularysis (1110)	0005	B200	0100	0000
	0005	B200	0100	0000
	0005	B600	0100	0000
	0005	B800	0100	0000
Check Memory Atmosphere Analysis	0005	C000	0100	60E0
Check Memory Admosphere Admarysis	0005	C200	0100	0000
	0005	C200	0100	0000
	0005	C400 C600	0100	0000
	0005	C800	0100	0000
Check Memory Silicate Analysis	0005	D000	0100	0000
Cheek Wellory Shieate Analysis	0005	D000 D200	0100	0000
	0005	D200	0100	0000
	0005	D400 D600	0100	0000
	0005	D000 D800	0100	0000
Check Memory Ice Core Analysis (MTO)	0005	E000	0100	0000
cheek wellory lee cole Analysis (wrto)	0005	E200	0100	0000
	0005	E200	0100	0000
	0005	E400 E600	0100	0000
	0005	E800	0100	0000
Check Memory Additional Science	0005	F000	0100	0000
Check Memory Additional Science	0005	F200	0100	0000
	0005	F400	0100	0000
	0005	F600	0100	0000
	0005	F800	0100	0000
Check Memory Ion Trap Tables	0003	0200	0400	C849
Check Memory Ion Trap Tables	0004	1200	0400	C849 C849
	0004	2200	0400	C849 C849
	0004	3200	0400	C849 C849
	0004	4200	0400	C849 C849
Check Memory Op Limits (1)	0004	0000	0048	5941
Check Memory Op Limits (1)	0004	1000	0048	2AED
	0004	2000	0048	0B45
	0004	3000	0048	B8DB
	0004	4000	0048	1562
Chaol: Mamoury On Limits (2)	0004	5000	0048	DDB0 or C2E9?
Check Memory Op Limits (2)	0004	6000	0048	DDB0 or C2E9?
	0004	7000	0048	DDB0 or C2E9?
	0004	8000	0048	DDB0 or C2E9?
	0004	9000	0048	DDB0 or C2E9? DDB0 or C2E9?
Check Memory Op Limits (3)	0004	9000 A000	0048	DDB0 or C2E9? DDB0 or C2E9?
Check Memory Op Linnis (5)	0004	B000	0048	DDB0 or C2E9? DDB0 or C2E9?
	0004	C000	0048	DDB0 or C2E9? DDB0 or C2E9?
	0004	D000	0048	DDB0 or C2E9? DDB0 or C2E9?
	0004	E000	0048	DDB0 or C2E9? DDB0 or C2E9?
Check Memory Op Limits (4)	0004	F000	0048	DDB0 or C2E9? DDB0 or C2E9?
Check memory Op Limits (4) Check memory Extended AFT	0004	2400	0048	2D1B
CHECK INCHIOLY EXICHACIA AFT	0005	2400	0080	AC12
	0005			
	0005	2600	0080 0034	23C6 9895
Chaoly Momory Datah 2		2700 0240		9895 46E2
Check Memory Patch 3	0007	0240	0100	
	0007	0440	0100 007B	0D42 E9A8

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.: RO-LPT-OU-PL-3114 Issue: 2.1 Date:29 April 2005Page:21 of 33

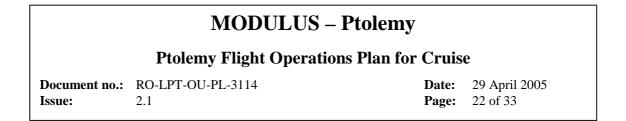
5 Operational modes description

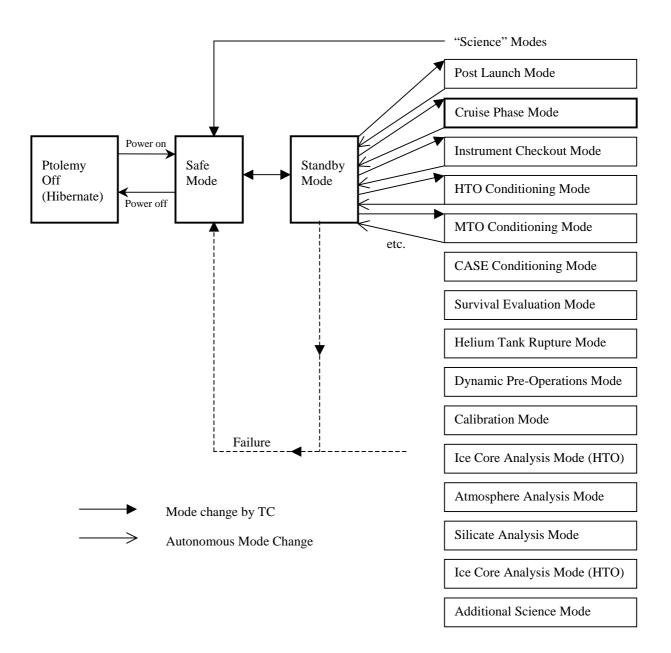
5.1 Overview of Ptolemy Operational Modes

The Ptolemy instrument is designed to operate by selection of modes initiated by telecommand from the lander CDMS and then function autonomously.

Whenever power to Ptolemy is turned on, Ptolemy will enter **Safe Mode** and await further commands from the lander CDMS. Ptolemy has two methods of receiving telecommands:

- 1) by receiving a direct TC from the CDMS. These are stored by the CDMS and are transmitted at a definite time after the start of a CDMS Application Mode Descriptor Table
- 2) by requesting the next TC from the CDMS stored TC table


From **Safe Mode**, the only mode that can be entered (by command from the lander CDMS) is **Standby Mode**. With Ptolemy in **Standby Mode**, the lander CDMS can command Ptolemy to enable any hazardous commands that are required for the intended subsequent **Science mode**, then the CDMS can send the start **Science Mode** command.


At the end of a **Science Mode** sequence, Ptolemy will autonomously return to **Standby Mode**, where all hazardous commands are automatically disabled. If Ptolemy has been set-up to request TC's then Ptolemy will request the next TC from the CDMS, otherwise Ptolemy will remain in **Standby Mode** until the next TC is sent by the CDMS or it is switched off.

An overview of Ptolemy Modes, and permitted Mode transitions, is shown in Figure 1. There are 4 general types of mode:

- Ptolemy Off
- Safe Mode
- Standby Mode
- Science Modes of which there are 15 sub-types. Only 1 sub-types will is considered in the present document, this being:
 - Cruise Phase Mode

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Figure 1. Schematic of the Ptolemy operational modes and permitted mode transitions.

When powered up Ptolemy enters Safe Mode, in which all chemistry components are off and all hazardous commands are disabled. Ptolemy can be moved between Safe Mode and Standby Mode by TC from the lander CDMS. In Standby Mode, hazardous commands can be enabled and parameters can be updated. From Standby Mode, Ptolemy can be commanded to run any Science Mode, in which a sequence of science commands is autonomously executed. On completion of the science mode, Ptolemy reverts to Standby Mode.

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.:	RO-LPT-OU-PL-3114
Issue:	2.1

Date:29 April 2005Page:23 of 33

5.2 Mode Descriptions

5.2.1 Ptolemy Off / Hibernate Mode

The default Mode for Ptolemy is Off.

5.2.2 Safe Mode

Whenever power to Ptolemy is turned on, Ptolemy will enter **Safe Mode.** All hazardous commands are disabled and all chemistry components are switched off. Ptolemy then awaits further commands from the lander CDMS. In **Safe Mode**, the Ptolemy command store can be modified. From **Safe Mode**, the only mode that can be entered (by command from the lander CDMS) is **Standby Mode**. The TC will also specify the start address for the science software.

5.2.3 Standby Mode

With Ptolemy in **Standby Mode**, the lander CDMS can command Ptolemy to enable any hazardous commands that are required for the intended subsequent mode, and can update any parameters in Ptolemy RAM. From **Standby Mode**, Ptolemy can then be commanded to run any of the **Science Modes**.

5.2.4 Science Modes

There are a total of 15 different science modes. When Ptolemy enters a Science Mode, it performs a series of actions described in a science command sequence, which is stored in a look-up table in EEPROM. The exact duration and power requirement of a mode will depend on local conditions. If Ptolemy encounters an invalid science command, or if Ptolemy detects that any of the science components are operating beyond their safe limits, then Ptolemy will autonomously return to **Safe Mode**. Whilst Ptolemy is running a science mode, it can be commanded at any time by the lander CDMS to return to **Safe Mode**. All other TCs are rejected by Ptolemy whilst running a science mode. At the end of a Science Mode sequence, Ptolemy will autonomously return to **Standby Mode**.

Only 2 Science Modes are used during Commissioning and Cruise Phases. These are Cruise Phase mode and Extended AFT (Limited Cruise Phase mode)

Note:

The Cruise Test Mode checkout can be run at most points during cruise, and provides useful data on instrument status.

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.:	RO-LPT-OU-PL-3114	Date:	29 April 2005
Issue:	2.1	Page:	24 of 33

Ptolemy has no specific mission requirements for asteroid or planet flybys, and may be left in hibernation (Off) mode.

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.: RO-LPT-OU-PL-3114 **Issue:** 2.1 Date:29 April 2005Page:25 of 33

6 Telecommands

6.1 Telecommand description

Ptolemy receives TC messages from the lander CDMS as a serial data stream containing an integral number of 16 bit words up to a maximum of 32 words.

The Ptolemy TC messages have a format that complies with the PUS standards for Orbiter instruments as described in RD4 Section 2.7.2.2. However, these messages are not treated as packets by the Orbiter DMS or the Lander CDMS but as data fields private to Ptolemy, to be passed on without checks or processing.

The first 5 words of a Ptolemy TC message (0 to 4) contain header information and identify the command type and subtype. The last word holds a CRC over the words in the packet which is calculated in the same way as for the PUS packets for Rosetta. The remaining words (5 to n-2 where the message is n words long) may be allocated to command parameters. A command may have from 0 to 26 parameters.

Command	Туре	Sub-type	params	remarks
		No.		
Load Memory	6	2	5-56	1-6 load memory blocks
Check Memory	6	9	4-25	1-8 memory check blocks
Copy Memory	192	1	6-26	1-5 copy memory blocks
Standby	193	0	3	page:offset:stored TC enb/dis
Cruise Phase	193	3	0	
Safe Mode	193	255	0	
Hazardous function	194	1	6	Hazard enable masks
Parameter update	195	1	4-26	Offset, length, parameters

See also RD2.

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

 Document no.:
 RO-LPT-OU-PL-3114

 Issue:
 2.1

Date:29 April 2005Page:26 of 33

6.1.1 Load_memory – Patch one or more blocks of memory

This TC allows patching of RAM or EEPROM

Summary	Hex	Decimal
Command type	06	6
Command subtype	02	2
Number of parameters	05-19	5-26

Word	Description	Contents	Comment	
00	Packet ID	1F3CH		
01	Packet sequence control	C000H to	Top 5 bits always 11000B	
		C7FFH		
02	Packet length	N*2-7	Total length in bytes-7	
03	Administration (MS byte)	1X06H	X=1 -> acknowledgement; X=0 -> no ack,	
	Type (LS byte)		06 – Ptolemy Mode Selection	
04	Subtype (MS byte)	0200H	02 Load Memory	
	Pad byte (LS byte)		00 Not used	
05	Memory ID (MS byte)	NNMMH	NN Memory ID	
	Block count (LS byte)		96H – PROM	
			97H – EEPROM	
		98H – RAM		
		MM Block count (1-6)		
06	Memory Page	0004H – 000FH Physical page for 1 st patch (EEPROM/RAM		
			only)	
07	Patch offset	0000H –FFFEH	Offset into 1 st page for patch	
08	Patch length	0000H - 0016H	Number of words in 1 st patch	
09	Patch data	0000H – FFFFH	H 0: Exec. Stored TCs disabled	
			1: Exec. Stored TCs enabled	
10-n-2	Stored TC enbl/disbl	0000H - 0001H	00H – 0001H Data of 1 st patch may continue. Further blocks	
			also allowed to max of 6.	
n-1	Checksum	CRC over 0 – Checksum for TC as used in PUS for Rosetta		
		(n-2)		

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.:	RO-LPT-OU-PL-3114	Date:	29 April 2005
Issue:	2.1	Page:	27 of 33

6.1.2 Check_memory – Perform checksum over one or more blocks of memory

This TC performs a simple checksum (sum of words in block, discarding carrys) over the specified blocks of memory

Summary	Hex	Decimal
Command type	06	6
Command subtype	09	9
Number of parameters	04-19	4-26

Word	Description	Contents	Comment	
00	Packet ID	1F3CH		
01	Packet sequence control	C000H to	Top 5 bits always 11000B	
	-	C7FFH		
02	Packet length	N*2-7	Total length in bytes-7	
03	Administration (MS byte)	1X06H	X=1 -> acknowledgement; X=0 -> no ack,	
	Type (LS byte)		06 – Ptolemy Mode Selection	
04	Subtype (MS byte)	0900H	09 Check Memory	
	Pad byte (LS byte)		00 Not used	
05	Memory ID (MS byte)	NNMMH	NN Memory ID	
	Block count (LS byte)		96H – PROM	
			97H – EEPROM	
			98H – RAM	
			MM Block count (1-6)	
06	Memory Page	0000H – 0001H Physical page for 1 st block (excludes I/O		
		0004H – 000FH	pages)	
07	Patch offset	0000H FFFEH	Offset into 1 st page for block	
08	Block length	0000H – xxxxH	-4	
09 –	May specify further	As words 06 to	Total block length may not exceed 1 page	
n-2	blocks in format as for	08 (8000H words)		
	words 06 to 08			
n-1	Checksum	CRC over 0 – Checksum for TC as used in PUS for Ro.		
		(n-2)		

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.:	RO-LPT-OU-PL-3114
Issue:	2.1

Date:29 April 2005Page:28 of 33

Following a check memory TC, Ptolemy will return a check memory report consisting of 32 words starting at word 32, 64 or 96 within the next housekeeping packet The format for a check memory report is

 0F37
 Csss
 0039
 tttt
 tttt
 4006
 0A00

 nnmm
 pppp
 oooo
 wwww xxxx
 4006
 0A00

where Csss is the sequence control, tttt is the onboard Lander time, nn is the memory ID (96 = PROM, 97 = EEPROM and 98 = RAM) mm is the number of check memory blocks, pppp is the first check memory page oooo is the first check memory offset wwww is the number of words in the first check memory and xxxx is the result of the check memory sum.

Words pppp, 0000, wwww and xxxx will be repeated for the following mm number of memoryu blocks (up to 5). Any unused words will be 0000.

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.:	RO-LPT-OU-PL-3114	Date:	29 April 2005
Issue:	2.1	Page:	29 of 33

6.1.3 Copy_memory – Copy memory from one block to another

This TC performs a copy memory from one memory block (page, offset) to another.

Summary	Hex	Decimal
Command type	C0	192
Command subtype	01	1
Number of parameters	06-1A	6-26

Word	Description	Contents	Comment	
00	Packet ID	1F3CH		
01	Packet sequence control	C000H to	Top 5 bits always 11000B	
	-	C7FFH		
02	Packet length	N*2-7	Total length in bytes-7	
03	Administration (MS byte)	1XC0H	X=1 -> ack; X=0 -> no ack,	
	Type (LS byte)		C0 – Ptolemy Mode Selection	
04	Subtype (MS byte)	0100H	01 Copy Memory	
	Pad byte (LS byte)		00 Not used	
05	Block count	0001H - 0005H	Number of memory blocks to expect	
06	Source Page	0000H - 0001H	Source page number for 1 st block (excludes I/O	
		0004H – 000FH	pages)	
07	Source offset	D000H – FFFEH Offset into page of source for 1 st block		
08	Destination page	0000H Destination page for 1 st block is data page		
			selected at start-up.	
		0001H	Destination page for 1 st block is program page	
			selected at start-up.	
		0004H – 000FH	Destination page number for 1 st block (in	
			EEPROM or RAM)	
09	Destination offset	0000H –FFFEH	Offset into page of destination for 1 st block	
10	Block length	0000H00xxH	Number of words to copy in 1 st block	
11 –	May have further records		Total block length may not exceed 1 page	
(n-2)	as words 06 - 10		(8000H) words	
n-1	Checksum	CRC over 0 – Checksum for TC as used in PUS for Rosetta		
		(n-2)		

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.:	RO-LPT-OU-PL-3114
Issue:	2.1

Date:29 April 2005Page:30 of 33

6.1.4 Start_standby – Select Instrument mode – Start standby from safe mode

This TC is sent to effect transition from safe (ROM) mode to science mode which is entered in Standby mode.

Summary	Hex	Decimal
Command type	C1	193
Command subtype	00	0
Number of parameters	03	3

Word	Description	Contents	Comment
00	Packet ID	1F3CH	
01	Packet sequence control	C000H to	Top 5 bits always 11000B
		C7FFH	
02	Packet length	0BH	Total length in bytes-7(=11 decimal)
03	Administration (MS byte)	1XC1H	$X=1 \rightarrow ack; X=0 \rightarrow no ack, C1 - Ptolemy$
	Type (LS byte)		Mode Selection
04	Subtype (MS byte)	0000H	00 Standby
	Pad byte (LS byte)		
05	Science mode code page	0000H	Page for science s/w entry point is code page
			in RAM as selected at start-up Page for science
		0001H	s/w entry is 1 (execute in PROM)
		0008H-000FH	Code page (in RAM) of entry point for science
			mode S/W
06	Science mode entry point	0000H-FFFEH	Offset of entry point on code page (even
			address)
07	Stored TC enbl/disbl	0000H-0001H	0: Exec. stored TCs disabled
			1: Exec. stored TCs enabled
08	Checksum	CRC over 0 – 7	Checksum for TC as used in PUS for Rosetta

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.:	RO-LPT-OU-PL-3114	Date:	29 April 2005
Issue:	2.1	Page:	31 of 33

6.1.5 Select_Post_Launch – Select Instrument mode – Post Launch

This TC is sent to effect transition from Standby mode to Post Launch mode

Summary	Hex	Decimal
Command type	C1	193
Command subtype	02	2
Number of parameters	00	0

Word	Description	Contents	Comment
00	Packet ID	1F3CH	
01	Packet sequence control	C000H to	Top 5 bits always 11000B
	_	C7FFH	
02	Packet length	0BH	Total length in bytes-7
03	Administration (MS byte)	1XC1H	X=1 -> ack; X=0 -> no ack
	Type (LS byte)		C1 – Ptolemy Mode Selection
04	Subtype (MS byte) Pad	0200H	02 – Post Launch
	byte (LS byte)		
05	Checksum	CRC over 0 – 4	Checksum for TC as used in PUS for Rosetta

6.1.6 Select_Cruise_Phase – Select Instrument mode – Cruise Phase

This TC is sent to effect transition from Standby mode to Cruise Phase mode

Summary	Hex	Decimal
Command type	C1	193
Command subtype	03	3
Number of parameters	00	0

Word	Description	Contents	Comment
00	Packet ID	1F3CH	
01	Packet sequence control	C000H to	Top 5 bits always 11000B
		C7FFH	
02	Packet length	05H	Total length in bytes-7
03	Administration (MS byte)	1XC1H	X=1 -> ack; X=0 -> no ack
	Type (LS byte)		C1 – Ptolemy Mode Selection
04	Subtype (MS byte)	0300H	03 – Cruise Phase
	Pad byte (LS byte)		
05	Checksum	CRC over 0 – 5	Checksum for TC as used in PUS for Rosetta

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.:	RO-LPT-OU-PL-3114
Issue:	2.1

 Date:
 29 April 2005

 Page:
 32 of 33

6.1.7 Select_Safe_Mode - Select Instrument mode - Return to safe Mode

This TC is sent to effect transition to Safe (ROM) mode

Summary	Hex	Decimal
Command type	C1	193
Command subtype	FF	255
Number of parameters	00	0

Word	Description	Contents	Comment
00	Packet ID	1F3CH	
01	Packet sequence control	C000H to	Top 5 bits always 11000B
		C7FFH	
02	Packet length	05H	Total length in bytes-7
03	Administration (MS byte)	1XC1H	X=1 -> ack; X=0 -> no ack
	Type (LS byte)		C1 – Ptolemy Mode Selection
04	Subtype (MS byte)	FF00H	FF – Start Safe Mode
	Pad byte (LS byte)		
05	Checksum	CRC over 0 – 4	Checksum for TC as used in PUS for Rosetta

6.1.8 Hazardous_Function_Enable – Enable/disable hazardous functions

This TC loads 16 bit masks of enable/disable bits for hazardous functions. These masks are copied into hardware registers where they electrically enable and disable the switching on of hazardous controls. The flight software never autonomously enables any of these lines.

Summary	Hex	Decimal
Command type	C2	194
Command subtype	01	1
Number of parameters	03	3

Word	Description	Contents	Comment
00	Packet ID	1F3CH	
01	Packet sequence control	C000H to	Top 5 bits always 11000B
		C7FFH	
02	Packet length	0BH	Total length in bytes-7
03	Administration (MS byte)	1XC2H	X=1 -> ack; X=0 -> no ack C2 – Ptolemy
	Type (LS byte)		Mode Selection
04	Subtype (MS byte)	0100H	01 – Enable/Disable
	Pad byte (LS byte)		
05	PWM enbl/disbl mask	XXXXH	Enable/disable mask for software PWM
06	Valve enbl/disbl mask	XXXXH	Enable/disable mask for valve (on/off) outputs
07	Critical function	XXXXH	Enable/disable mask for the critical functions
	enbl/disbl mask		outputs
08	Checksum	CRC over 0 – 7	Checksum for TC as used in PUS for Rosetta

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Flight Operations Plan for Cruise

Document no.:	RO-LPT-OU-PL-3114	Date:	29 April 2005
Issue:	2.1	Page:	33 of 33

6.1.9 Parameter_Update – Update Software Parameters

This TC allows updating of entries in a table of software parameters (sometimes called "variable constants").

Summary	Hex	Decimal
Command type	C3	195
Command subtype	01	1
Number of parameters	04-1A	4-26

Word	Description	Contents	Comment	
00	Packet ID	1F3CH		
01	Packet sequence control	C000H to	Top 5 bits always 11000B	
	_	C7FFH		
02	Packet length	N * 2 – 7	Total length in bytes-7	
03	Administration (MS byte)	1XC3H	X=1 -> ack; X=0 -> no ack	
	Type (LS byte)		C3 – Parameter update	
04	Subtype (MS byte)	0100H	01 – Parameter Update	
	Pad byte (LS byte)			
05	Offset into table	0 – Range-1	Range shall be determined at compile time	
			<fffeh< td=""></fffeh<>	
06	Number of parameters	0001H - 0018H	Number of consecutive parameters to update;	
			1 – 24	
07	First parameter value	0000H –	New value for 1^{st} parameter (at Table + offset)	
		FFFFH		
08 –	[Possible further	[0000H –	Up to 23 further parameters	
(n-2)	parameters]	FFFFH]		
(n-1)	Checksum	CRC over 0 –	Checksum for TC as used in PUS for Rosetta	
		(n-2)		

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.