Ptolemy Sensors Calibration

Document no.: RO-LPT-OU-TN-3146 Issue: 1.0 Date:30 March 2006 2005Page:1 of 19

MODULUS – Ptolemy

Ptolemy Sensors Calibration

Document no.: RO-LPT-OU-TN-3146 **Issue:** 1.0

Prepared by:	ANDREW MORSE	Date:	
Approved by:		Date:	
Authorised by:	SIMEON BARBER	Date:	

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Sensors Calibration

Document no.:	RO-LPT-OU-TN-3146	Date:
Issue:	1.0	Page

 te:
 30 March 2006 2005

 ge:
 2 of 19

CHANGE RECORD

DATE	CHANGE DETAILS	ISSUE
30 March 2006	Document created	1.0

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Sensors Calibration

Document no.: RO-LPT-OU-TN-3146 **Issue:** 1.0

Date: 30 March 2006 2005 Page: 3 of 19

TABLE OF CONTENTS

1	Intro	oduction	4
	1.1	Purpose	4
	1.2	References	4
	1.3	Abbreviations and Acronyms	4
	1.4	Ptolemy model summary	
2	Ove	rview of Sensor measurements	
3	Ptol	emy Sensor Transfer Functions	9
	3.1	Reference junction temperature (AD590)	
	3.2	Thermocouple temperatures	9
	3.3	Pressure Sensors	13
	3.4	Docking Station	13
	3.5	Nanotip current	13
	3.6	Detector Bias	14
	3.7	Voltage monitors of power supply rails	14
	3.8	Current monitors of power supply rails	14
	3.9	RF calibration	15
4	Арр	endix A	16

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Sensors Calibration

Document no.: RO-LPT-OU-TN-3146 **Issue:** 1.0 Date:30 March 2006 2005Page:4 of 19

1 Introduction

1.1 Purpose

This document describes the process of converting the sensor voltages measured by Ptolemy into calibrated sensor readings.

1.2 References

	Reference	Title	Issue	Date
RD1	RO-LPT-OU-TN-3401	Hardware Software Interface	5	03/04/2001
		Document Issue 5		
RD2	RO-LPT-RAL-TN-3403	Ptolemy Telecommand and	5.1	26/02/2001
		Telemetry Definitions		

1.3 Abbreviations and Acronyms

ADC	Analogue to Digital Converter
ASIC	Applications Specific Integrated Circuit (i.e a custom chip)
CDMS	Command and Data Management System (Lander on-board computer)
CSS	Chemistry Set Simulator
DAC	Digital to Analogue Converter
FM	Flight Model – The Ptolemy instrument on the Rosetta space craft
GRM	Ground Reference Model
HK	House Keeping - telemetry required to confirm correct operation of instrument
HT	High Tension (high voltage - ~2kV in this case)
HV	High voltage (same as HT)
OU	Open University
QM	Qualification Model
RAL	Rutherford Appleton Laboratory
RICA	Rosetta Ion-Counter ASIC – one of the ASICs used to control & read the Ion-trap
TC	Telecommands
Tlm	Telemetry
TM	Telemetry

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Sensors Calibration

Document no.: RO-LPT-OU-TN-3146 **Issue:** 1.0
 Date:
 30 March 2006 2005

 Page:
 5 of 19

1.4 Ptolemy model summary

There are four versions of the Ptolemy instrument.

Flight Model (FM)

The Ptolemy FM is the instrument currently on the Rosetta space craft and is the actual model that will be performing the scientific sequences on the comet in 2014. Much of the calibration of the FM was done during thermal vacuum testing from 21st to 25th May 2001

Qualification Model (QM)

The qualification model is as close as practically possible to being an exact replica of the Flight Model. The QM resides in the laboratories at the Open University where calibration and characterisation continues.

Ground Reference Model (GRM)

An electrical representation of the FM. This model has approximately the same size as the FM and resides at DLR as part of the Lander Ground Reference Model. It simulates the power requirements of Ptolemy as close as possible whilst being able to operate at atmospheric pressure.

Chemistry Set Simulator (CSS)

An electrical simulation of the FM. This model was designed to help test the Ptolemy software and simulate TC sequences. The CSS resides in the laboratories at the Open University where TC sequences are tested before being uploaded on to the QM.

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Sensors Calibration

Document no.: RO-LPT-OU-TN-3146 **Issue:** 1.0 Date:30 March 2006 2005Page:6 of 19

2 Overview of Sensor measurements

Ptolemy sensors measure the desired feature and produce a voltage. Usually this voltage is conditioned to bring it within the +/- 10V voltage range of the 16 bit Analogue to Digital Converter. One of the 32 sensor signals is then selected by a multiplexer to be sent to the 16 bit analogue to digital converter where it is converted to a 16 bit word (in 2's complement format). Sensor measurements within Ptolemy Science packets are transmitted as the full 16 bit word. Ptolemy Housekeeping reports only transmit the 8 most significant bits of the 16 bit word in order to compress the data whilst maintaining the adequate precision. The "bit shift" for each sensor is described in the Ptolemy hardware/software interface document (RD1, pages 21 to 23).

The procedure to convert the raw data to a sensor reading is:

For 8 bit housekeeping reports apply the bit shift to convert the 8 bit data to the original 16 bit reading.

Convert the 16 bit (2's complement) reading to a measured voltage.

Apply the transfer function to obtain the original sensor measurement.

Science	e TM	Sensor Description	HK bit shift
channel	l		
Hex	Decimal		
00	00	Reactor R1 thermocouple (N-type)	7
01	01	Reactor R2 thermocouple (N-type)	7
02	02	Reactor R4 thermocouple (N-type)	7
03	03	Reactor R5 thermocouple (N-type)	7
04	04	Reactor R6 thermocouple (N-type)	7
05	05	Reactor R7 thermocouple (N-type)	7
06	06	Reactor R8 thermocouple (N-type)	7
07	07	Reactor R9/R14 thermocouple (N-type)	7
08	08	Reactor R13 thermocouple (N-type)	7
09	09	Reactor R15 thermocouple (N-type)	7
0A	10	Lindau valve LV1 thermocouple (N-type)	4
0B	11	Lindau valve LV2 thermocouple (N-type)	4
0C	12	Spare not used	
0D	13	Spare not used	
0E	14	Lindau valve LV5 thermocouple (N-type)	4
0F	15	Lindau valve LV6 thermocouple (N-type)	4
10	16	Lindau valve LV7 thermocouple (N-type)	4
11	17	GC thermocouple (N-type)	5
12	18	Manifold (Thermal enclosure) A thermocouple (N-	4
		type)	
13	19	Manifold (Thermal enclosure) B thermocouple (N-	4
		type)	
14	20	Ion trap thermocouple (N-type)	4

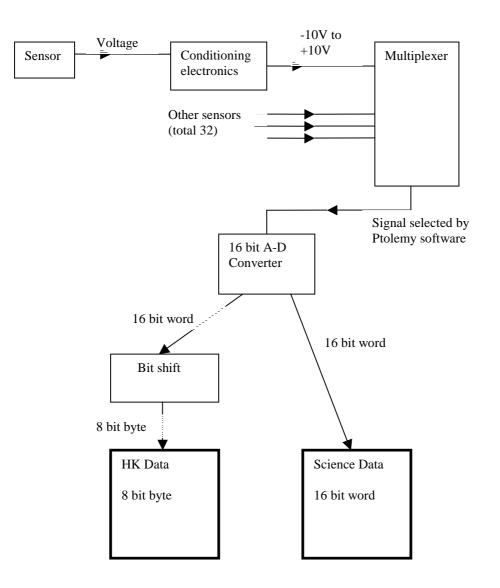
This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Sensors Calibration

Document no.:RO-LPT-OU-TN-3146Issue:1.0

 Date:
 30 March 2006 2005

 Page:
 7 of 19


15	21	Oven thermocouple (K-type)	7
16	21	Pipe heater thermocouple (N-type)	4
10	23	Absolute pressure sensor G1	7
18	24	Absolute pressure sensor G2	7
19	25	Absolute pressure sensor G3	7
1A	26	Absolute pressure sensor G4	6
1B	27	Absolute pressure sensor G5	5
1C	28	Reactor R14 thermocouple (N-type)	7
1D-1F	29-31	3 unsused channels	
2X	32-47	reference junction thermometer (AD590)	6
3X	48-63	Docking station potentiometer	5
4X	64-79	Nanotip current	6
5X	80-95	Detector bias (HT)	6
6X	96-111	5V voltage monitor	6
7X	111-127	28V voltage monitor	6
8X	128-143	5V current monitor	5
9X	144-159	28V current monitor	5
AX	160-175	RF amplitude	5
BX	176-191	Spare channel	
CX-	192-255	not used	
FX			

X – Don't care; these bit fields are not decoded by the hardware, it is suggested that 0 be used.

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Sensors Calibration

Document no.:	RO-LPT-OU-TN-3146	Date:	30 March 2006 2005
Issue:	1.0	Page:	8 of 19

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Sensors Calibration

Document no.: RO-LPT-OU-TN-3146 Issue: 1.0 Date:30 March 2006 2005Page:9 of 19

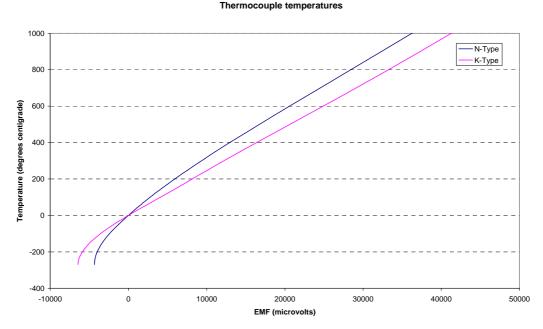
3 Ptolemy Sensor Transfer Functions

3.1 Reference junction temperature (AD590)

The temperature of the thermocouple reference junction is measured by an AD590 which gives an output of 1 μ A/Kelvin. The conditioning circuit measures the voltage drop across a 10 k Ω resistor.

The bit shift for HK data is 6 The AD590 reading in $^{\circ}$ C = measured voltage x 100 -273

For housekeeping reports (8 bit), 1 bit = 1.9° C For Science reports (16 bit), 1 bit = 0.03° C


3.2 Thermocouple temperatures

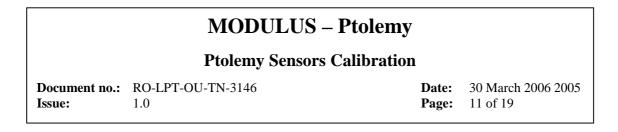
A thermocouple sensor measures the emf (electro-motive force) created at a junction of two dissimilar metals caused by the temperature difference between the thermocouple junction and a reference junction. As the emfs generated are small, the conditioning circuit increases the signal by a gain of 100. The transfer function is complicated because it is not a linear function and the reference junction also generates an emf depending upon its temperature.

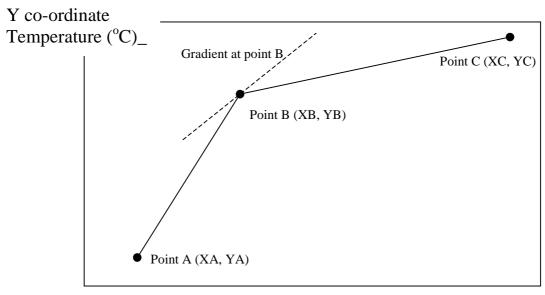
This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Sensors Calibration

Document no.:	RO-LPT-OU-TN-3146	Date:	30 March 2006 2005
Issue:	1.0	Page:	10 of 19

Plot of temperature reading against thermocouple emf for type K and type N thermocouples. Data plotted from Appendix A.


Three methods are suggested for calculating temperatures from thermocouple emfs.


- Compile a data table of thermocouple emfs for all temperatures and then just read off the temperature against the emf. The data are available on data sheets and the web, but the Ptolemy team views that manual data entry of data for every degree from -200 to +1000 °C is likely to lead to errors.
- 2. Use a polynomial transfer function to convert emf to degrees centigrade. A second order polynomial is accurate to 1°C for temperature ranges -100°C to + 130°C and gives errors of more than 30°C above 500°C
- 3. Compile a coarse data table of thermocouple emfs against temperature and then calculate the transfer function. This is the method used by the Ptolemy EGSE. Data of the emfs generated by type K and N thermocouples and used by the Ptolemy EGSE are shown in appendix A.

The Ptolemy EGSE method of calculating temperature.

1. Calculate the gradient, rate of change of gradient, 1/gradient and rate of change of 1/gradient for each temperature point for both K-type and N-type thermocouples.

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

X co-ordinate emf (μ V)

For point B, the gradient is the weighted average of the gradient from point A to B and the gradient of point B to C.

So the gradient at point B,

Grad B =
$$\left\{\frac{(YB - YA)}{(XB - XA)}(XC - XB) + \frac{(YC - YB)}{(XC - XB)}(XB - XA)\right\} \left(\frac{1}{(XC - XA)}\right)$$

The rate of change of gradient at point B,

$$\delta \text{GradB} = \left\{ \frac{\left(\text{Grad}_{C} - \text{Grad}_{B} \right)}{\left(XC - XB \right)} \right\}$$

1/gradient at point B,

$$\operatorname{Grad} \mathbf{B}^{-1} = \left\{ \frac{1}{\operatorname{Grad}_B} \right\}$$

And the rate of change of 1/gradient,

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Sensors Calibration

Document no.:	RO-LPT-OU-TN-3146	Date:	30 March 2006 2005
Issue:	1.0	Page:	12 of 19

$$\delta \text{Grad } B^{-1} = \left\{ \frac{\left(Grad_{C}^{-1} - Grad_{B}^{-1} \right)}{\left(XC - XB \right)} \right\}$$

2. Calculate the emf generated by the temperature of the reference junction for both Ktype and N-type thermocouples. This is achieved by using the data point with a temperature just below the reference junction temperature.

 $EMF_{ref} = EMF_{data} + (Temp_{ref} - Temp_{data}) \times Grad_{data}^{-1} + 0.5 \times (Temp_{ref} - Temp_{data})^2 \times \delta Grad_{data}^{-1}$

Example: Reference junction temperature = $23^{\circ}C$ Data point used is 20°C which for an N-type thermocouple, EMF_{data} = $525\mu V$, Grad_{data}⁻¹ = $26.597\mu V/^{\circ}C$ and $\delta Grad_{data}^{-1} = 0.04 \mu V ^{\circ}C^{-2}$

 $EMF_{ref-N} = 525 + 3 \times 26.597 + 0.5 \times 3^2 \times 0.04 = 604.97 \mu V$

For K-type thermocouple, EMF_{data} = 798 μ V, Grad_{data}⁻¹ = 40.298 μ V/°C and δ Grad_{data}⁻¹ = 0.04 μ V °C⁻²

 $EMF_{ref-K} = 798 + 3 \times 40.298 + 0.5 \times 3^2 \times 0.04 = 919.07 \mu V$

3. The conditioning circuits for all thermocouples have a gain of 100. To obtain the thermocouple emf then apply the bit shift for HK data, convert the reading to a voltage and then multiply by 10000 to give a thermocouple emf in μV .

Example: Reactor 1 HK value 45(hex)

Apply bit shift of 7 gives 2280(hex) = 8832(dec) = 2.6953V, which gives a measured emf of 26953 µV.

- 4. Add the appropriate emf (K/N type) for the reference junction. Reactor 1 emf 26953µV, with a reference junction temperature of 23°C Example: gives an emf of $26953 + 605 = 27558 \,\mu\text{V}$.
- 5. Calculate the temperature to generate the emf of thermocouples. This is achieved by using the data point with an emf just below the measured thermocouple emf.

 $Temp_{tc} = Temp_{data} + (emf_{tc} - emf_{data}) \times Grad_{data} + 0.5 \times (emf_{tc} - emf_{data})^2 \times \delta Grad_{data}$ N-type thermocouple $emf = 27558\mu V$ Example: Data point used is 750°C, which for N-type thermocouple, $emf_{data} = 26491 \mu V$, $Grad_{data} = 0.025458 \ ^{\circ}C/\mu V$ and $\delta Grad_{data} = 9.923 \times 10^{-9} \ ^{\circ}C \ \mu V^{-2}$

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Sensors Calibration

Document no.:	RO-LPT-OU-TN-3146	Date:	30 March 2006 2005
Issue:	1.0	Page:	13 of 19

 $\text{Temp}_{\text{tc}} = 750 + 1067 \text{ x } 0.025458 + 0.5 \text{ x } 1067^2 \text{ x } 9.923 \text{ x} 10^{-9} = 777^{\circ}\text{C}$

3.3 Pressure Sensors

The transfer function for the pressure sensors is linear.

Pressure = AxV + B

Where A and B are constants determined for each sensor and V is the measured voltage from the ADC.

Values determined for the Flight Model are:

Sensor	Bit shift	Constant A	Constant B	Units
G1 (0-4 Bar)	7	13.25	0.0	Bar
G2 (0-10 Bar)	7	7.8	-0.75	Bar
G3 (0-4 Bar)	7	12.3	-1.6	Bar
G4 (0-1.6 Bar)	6	18.7	0.0	Bar
G5 (0-0.6Bar)	5	37.5	0.0	mBar

3.4 Docking Station

The docking station position is measured by a sliding potentiometer.

The bit shift for HK data is 5 The docking station position in mm = measured voltage x 5.2

For housekeeping reports (8 bit), 1 bit = 0.0058 mm For Science reports (16 bit), 1 bit = 0.0016 mm

3.5 Nanotip current

This gives the current emitted by the field effect electron source in the mass spectrometer

The bit shift for HK data is 6 The nanotip current in μA = measured voltage x 100

For housekeeping reports (8 bit), 1 bit = 7.6μ A

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Sensors Calibration

Document no.: RO-LPT-OU-TN-3146 **Issue:** 1.0 Date:30 March 2006 2005Page:14 of 19

For Science reports (16 bit), 1 bit = $0.5\mu A$

3.6 Detector Bias

The conditioning circuit for the electron multiplier detector has a gain of 0.001

The bit shift for HK data is 6 The detector bias in kV = measured voltage

For housekeeping reports (8 bit), 1 bit = 0.0195 kVFor Science reports (16 bit), 1 bit = 0.0003 kV

3.7 Voltage monitors of power supply rails

The conditioning circuit fort the 5V monitor has a gain of 0.5 and for the 28V monitor has a gain of 0.1

For the 5 V monitor: The bit shift for HK data is 6 The 5V rail voltage = measured voltage x 2 V

For housekeeping reports (8 bit), 1 bit = 0.039 V For Science reports (16 bit), 1 bit = 0.00061 V

For the 28V monitor: The bit shift for HK data is 6 The 28V rail voltage = measured voltage x 10 V

For housekeeping reports (8 bit), 1 bit = 0.195 V For Science reports (16 bit), 1 bit = 0.003 V

3.8 Current monitors of power supply rails

For both the 5 V and 28 V current monitors: The bit shift for HK data is 5 The current = measured voltage x 1000mA

For housekeeping reports (8 bit), 1 bit = 9.7mA For Science reports (16 bit), 1 bit = 0.3mA

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Sensors Calibration

Document no.: RO-LPT-OU-TN-3146 Issue: 1.0 Date:30 March 2006 2005Page:15 of 19

3.9 **RF** calibration

The output from the mass spectrometer RF circuit is measured by a separate DAC from the other sensors and is used to tune the RF generator by onboard software. The conditioning circuit has a gain of 0.01

The bit shift for HK data is 5 The RF voltage = measured voltage x 100 V

For housekeeping reports (8 bit), 1 bit = 0.98 V For Science reports (16 bit), 1 bit = 0.03 mV

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Sensors Calibration

Document no.: RO-LPT-OU-TN-3146 **Issue:** 1.0 Date:30 March 2006 2005Page:16 of 19

4 Appendix A

	N – Type thermocouples					
Temperature	Emf	Grad	δGrad x 10 ⁻⁶	Grad ⁻¹	δGrad ⁻¹	
(oC)	(µV)	$(^{o}C \mu V^{-1})$	$(^{\circ}C \mu V^{-2})$	$(\mu V ^{o}C^{-1})$	$(\mu V ^{o}C^{-2})$	
	•	•				
-270	-4345					
-260	-4336	0.9205	-24302.846	1.086	0.151	
-250	-4314	0.3858	-3966.397	2.592	0.159	
-240	-4277	0.2391	-1189.423	4.183	0.142	
-230	-4226	0.1784	-553.801	5.605	0.139	
-220	-4162	0.1430	-318.254	6.994	0.149	
-210	-4083	0.1178	-177.055	8.487	0.138	
-200	-3990	0.1014	-109.097	9.865	0.127	
-190	-3884	0.0898	-78.782	11.136	0.129	
-180	-3766	0.0805	-57.144	12.422	0.128	
-170	-3634	0.0730	-39.359	13.706	0.115	
-160	-3491	0.0673	-30.387	14.852	0.112	
-150	-3336	0.0626	-24.233	15.969	0.109	
-140	-3171	0.0586	-19.545	17.058	0.107	
-130	-2994	0.0552	-14.712	18.128	0.095	
-120	-2808	0.0524	-12.767	19.074	0.096	
-110	-2612	0.0499	-10.482	20.030	0.090	
-100	-2407	0.0478	-8.299	20.931	0.081	
-90	-2193	0.0460	-6.497	21.739	0.070	
-80	-1972	0.0446	-5.916	22.439	0.070	
-70	-1744	0.0432	-4.688	23.139	0.061	
-60	-1509	0.0421	-3.957	23.745	0.055	
-50	-1269	0.0412	-3.720	24.293	0.055	
-40	-1023	0.0402	-2.561	24.845	0.040	
-30	-772	0.0396	-2.124	25.248	0.035	
-20	-518	0.0391	-1.768	25.597	0.030	
-10	-260	0.0386	-0.858	25.899	0.015	
0	0	0.0384	-1.112	26.050	0.020	
10	261	0.0381	-1.892	26.248	0.035	
20	525	0.0376	-2.079	26.597	0.040	
30	793	0.0370	-1.749	26.997	0.035	
40	1065	0.0366	-1.674	27.348	0.035	
50	1340	0.0361	-1.842	27.697	0.040	
60	1619	0.0356	-1.765	28.097	0.040	
70	1902	0.0351	-1.693	28.497	0.040	
80	2189	0.0346	-1.428	28.897	0.035	
90	2480	0.0342	-1.371	29.248	0.035	
100	2774	0.0338	-1.512	29.597	0.040	
110	3072	0.0333	-1.453	29.997	0.040	
120	3374	0.0329	-1.228	30.397	0.035	

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Sensors Calibration

Document no.: RO-LPT-OU-TN-3146 **Issue:** 1.0 Date:30 March 2006 2005Page:17 of 19

			1	1	-
130	3680	0.0325	-1.181	30.749	0.035
140	3989	0.0322	-1.143	31.097	0.035
150	4302	0.0318	-0.970	31.447	0.031
170	4937	0.0312	-0.922	32.068	0.031
190	5585	0.0306	-0.802	32.694	0.029
210	6245	0.0301	-0.697	33.270	0.026
230	6916	0.0296	-0.634	33.796	0.025
250	7597	0.0292	-0.577	34.296	0.024
270	8288	0.0288	-0.497	34.772	0.021
290	8988	0.0284	-0.478	35.198	0.021
310	9696	0.0281	-0.410	35.622	0.019
330	10413	0.0278	-0.340	35.999	0.016
350	11136	0.0275	-0.312	36.320	0.015
400	12974	0.0270	-0.245	37.094	0.013
450	14846	0.0265	-0.190	37.735	0.010
500	16748	0.0261	-0.137	38.257	0.008
550	18672	0.0259	-0.100	38.649	0.006
600	20613	0.0257	-0.067	38.939	0.004
650	22566	0.0255	-0.037	39.140	0.002
700	24527	0.0255	-0.010	39.250	0.001
750	26491	0.0255	0.010	39.280	-0.001
800	28455	0.0255	0.030	39.250	-0.002
850	30416	0.0255	0.044	39.160	-0.003
900	32371	0.0256	0.061	39.030	-0.004
950	34319	0.0257	0.086	38.849	-0.005
1000	36256	0.0259	0.102	38.599	-0.006
1050	38179	0.0261	0.119	38.309	-0.007
1100	40087	0.0263	0.145	37.978	-0.008
1150	41977	0.0266	0.161	37.588	-0.008
1200	43846	0.0269	0.199	37.168	-0.010
1250	45694	0.0273		36.665	
1300	47513				

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Sensors Calibration

Document no.: RO-LPT-OU-TN-3146 Issue: 1.0 Date:30 March 2006 2005Page:18 of 19

	K – Type thermocouples					
Temperature	Emf	Grad	δGrad x 10 ⁻⁶	Grad ⁻¹	δGrad ⁻¹	
(oC)	(µV)	$(^{\circ}C \mu V^{-1})$	$(^{\circ}C \mu V^{-2})$	$(\mu V ^{o}C^{-1})$	$(\mu V ^{o}C^{-2})$	
-270	-6458					
-260	-6441	0.4881	-6956.320	2.049	0.229	
-250	-6404	0.2308	-1382.976	4.334	0.243	
-240	-6344	0.1478	-453.593	6.767	0.228	
-230	-6262	0.1106	-204.127	9.043	0.215	
-220	-6158	0.0893	-109.838	11.192	0.199	
-210	-6035	0.0758	-68.447	13.186	0.197	
-200	-5891	0.0660	-43.268	15.156	0.179	
-190	-5730	0.0590	-31.288	16.944	0.179	
-180	-5550	0.0534	-22.018	18.732	0.165	
-170	-5354	0.0491	-16.960	20.379	0.162	
-160	-5141	0.0455	-13.097	21.999	0.155	
-150	-4913	0.0425	-10.523	23.546	0.152	
-140	-4669	0.0399	-8.441	25.061	0.145	
-130	-4411	0.0377	-6.989	26.508	0.141	
-120	-4138	0.0358	-5.389	27.920	0.126	
-110	-3852	0.0343	-4.714	29.175	0.125	
-100	-3554	0.0329	-4.188	30.422	0.126	
-90	-3243	0.0316	-3.301	31.677	0.111	
-80	-2920	0.0305	-2.836	32.785	0.105	
-70	-2587	0.0296	-2.595	33.832	0.105	
-60	-2243	0.0287	-2.048	34.886	0.091	
-50	-1889	0.0279	-1.786	35.791	0.085	
-40	-1527	0.0273	-1.581	36.639	0.080	
-30	-1156	0.0267	-1.384	37.443	0.075	
-20	-778	0.0262	-1.227	38.192	0.070	
-10	-392	0.0257	-0.917	38.895	0.055	
0	0	0.0254	-0.722	39.447	0.045	
10	397	0.0251	-0.620	39.898	0.040	
20	798	0.0248	-0.602	40.298	0.040	
30	1203	0.0246	-0.442	40.698	0.030	
40	1612	0.0244	-0.288	41.000	0.020	
50	2023	0.0243	-0.284	41.200	0.020	
60	2436	0.0242	-0.211	41.400	0.020	
70	2851	0.0241	0.000	41.550	0.000	
80	3267	0.0241	0.140	41.550	-0.010	
90	3682	0.0241	0.141	41.450	-0.010	
100	4096	0.0242	0.214	41.350	-0.015	
110	4509	0.0242	0.214	41.200	-0.015	

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.

Ptolemy Sensors Calibration

Document no.:RO-LPT-OU-TN-3146Issue:1.0

Date:30 March 2006 2005Page:19 of 19

120 4920 0.0244 0.292 40.949 -0.020 130 5328 0.0245 0.375 40.750 -0.025 140 5735 0.0247 0.378 40.498 -0.025 150 6138 0.0248 0.174 40.250 -0.011 170 6941 0.0250 0.058 40.024 -0.004 190 7739 0.0250 -0.117 39.950 0.007 210 8539 0.0249 -0.192 40.100 0.012 230 9343 0.0248 -0.262 40.349 0.017 250 10153 0.0246 -0.257 40.6988 0.018 270 10971 0.0244 -0.197 41.049 0.014 290 11795 0.0242 -0.158 41.324 0.011 310 12624 0.0241 -0.121 41.550 0.009 330 13457 0.0237 -0.063 42.229 0.005 450 18516 0.0235 -0.034 42.470 0.003 500 20644 0.0235 -0.034 42.470 0.002 650 27025 0.0237 0.097 42.239 -0.007 700 29129 0.0237 0.097 42.239 -0.007 700 29129 0.0235 0.066 42.490 -0.002 650 27025 0.0237 0.097 42.239 -0.001 900 33275 <						
140 5735 0.0247 0.378 40.498 -0.025 150 6138 0.0248 0.174 40.250 -0.011 170 6941 0.0250 0.058 40.024 -0.004 190 7739 0.0250 -0.117 39.950 0.007 210 8539 0.0249 -0.192 40.100 0.012 230 9343 0.0248 -0.262 40.349 0.017 250 10153 0.0246 -0.257 40.698 0.018 270 10971 0.0244 -0.197 41.049 0.014 290 11795 0.0242 -0.158 41.324 0.011 310 12624 0.0241 -0.121 41.550 0.009 330 13457 0.0240 -0.066 41.725 0.008 350 14293 0.0239 -0.094 41.879 0.007 400 16397 0.0235 -0.034 42.470 0.003 500 22644 0.0235 -0.034 42.490 -0.005 650 2776 0.0235 0.066 42.490 -0.005 650 27025 0.0237 0.097 42.239 -0.007 700 29129 0.0239 0.116 41.878 -0.008 750 31213 0.0241 0.131 41.458 -0.009 800 33275 0.0250 0.162 40.007 -0.010 900 37326	120	4920	0.0244	0.292	40.949	-0.020
150 6138 0.0248 0.174 40.250 -0.011 170 6941 0.0250 0.058 40.024 -0.004 190 7739 0.0250 -0.117 39.950 0.007 210 8539 0.0249 -0.192 40.100 0.012 230 9343 0.0248 -0.262 40.349 0.017 250 10153 0.0246 -0.257 40.698 0.018 270 10971 0.0244 -0.197 41.049 0.014 290 11795 0.0242 -0.158 41.324 0.011 310 12624 0.0241 -0.121 41.550 0.009 330 13457 0.0240 -0.106 41.725 0.008 350 14293 0.0239 -0.094 41.879 0.007 400 16397 0.0235 -0.034 42.229 0.005 450 18516 0.0235 -0.034 42.2470 0.003 500 22776 0.0235 0.031 42.610 -0.002 660 24905 0.0235 0.066 42.490 -0.005 650 27025 0.0237 0.997 42.239 -0.007 700 29129 0.0239 0.116 41.878 -0.008 750 31213 0.0241 0.133 40.507 -0.010 950 39314 0.0253 0.162 40.007 -0.011 1000 412	130	5328	0.0245	0.375	40.750	-0.025
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	140	5735	0.0247	0.378	40.498	-0.025
190 7739 0.0250 -0.117 39.950 0.007 210 8539 0.0249 -0.192 40.100 0.012 230 9343 0.0248 -0.262 40.349 0.017 250 10153 0.0246 -0.257 40.698 0.018 270 10971 0.0244 -0.197 41.049 0.014 290 11795 0.0242 -0.158 41.324 0.011 310 12624 0.0241 -0.121 41.550 0.009 330 13457 0.0240 -0.106 41.725 0.008 350 14293 0.0239 -0.094 41.879 0.007 400 16397 0.0237 -0.063 42.29 0.005 450 18516 0.0235 -0.003 42.600 0.000 550 22776 0.0235 0.031 42.610 -0.002 660 24905 0.0235 0.066 42.490 -0.005 650 27025 0.0237 0.116 41.878 -0.008 750 31213 0.0241 0.131 41.458 -0.009 800 33275 0.0244 0.145 40.997 -0.010 950 39314 0.0253 0.162 40.007 -0.010 950 39314 0.0260 0.281 37.184 -0.014 1000 41276 0.0269 0.281 37.184 -0.014 1000 45	150	6138	0.0248	0.174	40.250	-0.011
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	170	6941	0.0250	0.058	40.024	-0.004
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	190	7739	0.0250	-0.117	39.950	0.007
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	210	8539	0.0249	-0.192	40.100	0.012
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	230	9343	0.0248	-0.262	40.349	0.017
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	250	10153	0.0246	-0.257	40.698	0.018
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	270	10971	0.0244	-0.197	41.049	0.014
330 13457 0.0240 -0.106 41.725 0.008 350 14293 0.0239 -0.094 41.879 0.007 400 16397 0.0237 -0.063 42.229 0.005 450 18516 0.0235 -0.034 42.470 0.003 500 20644 0.0235 -0.003 42.600 0.000 550 22776 0.0235 0.031 42.610 -0.002 600 24905 0.0235 0.066 42.490 -0.005 650 27025 0.0237 0.097 42.239 -0.007 700 29129 0.0239 0.116 41.878 -0.008 750 31213 0.0241 0.131 41.458 -0.009 800 33275 0.0244 0.145 40.997 -0.010 850 35313 0.0247 0.153 40.507 -0.010 900 37326 0.0257 0.186 38.966 -0.011	290	11795	0.0242	-0.158	41.324	0.011
350 14293 0.0239 -0.094 41.879 0.007 400 16397 0.0237 -0.063 42.229 0.005 450 18516 0.0235 -0.034 42.470 0.003 500 20644 0.0235 -0.003 42.600 0.000 550 22776 0.0235 0.031 42.610 -0.002 600 24905 0.0235 0.066 42.490 -0.005 650 27025 0.0237 0.097 42.239 -0.007 700 29129 0.0239 0.116 41.878 -0.008 750 31213 0.0241 0.131 41.458 -0.009 800 33275 0.0244 0.145 40.997 -0.010 850 35313 0.0247 0.153 40.507 -0.010 900 37326 0.0257 0.186 38.966 -0.011 1000 41276 0.0257 0.186 38.966 -0.012	310	12624	0.0241	-0.121	41.550	0.009
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	330	13457	0.0240	-0.106	41.725	0.008
450185160.0235-0.03442.4700.003500206440.0235-0.00342.6000.000550227760.02350.03142.610-0.002600249050.02350.06642.490-0.005650270250.02370.09742.239-0.007700291290.02390.11641.878-0.008750312130.02410.13141.458-0.009800332750.02440.14540.997-0.010850353130.02470.15340.507-0.010900373260.02500.16240.007-0.0111000412760.02570.18638.966-0.0111050432110.02600.21338.426-0.0121100451190.02640.24637.835-0.0131150469950.02690.28137.184-0.0141200488380.02740.32836.482-0.0151250506440.028035.711-0.015-0.015	350	14293	0.0239	-0.094	41.879	0.007
500206440.0235-0.00342.6000.000550227760.02350.03142.610-0.002600249050.02350.06642.490-0.005650270250.02370.09742.239-0.007700291290.02390.11641.878-0.008750312130.02410.13141.458-0.009800332750.02440.14540.997-0.010850353130.02470.15340.507-0.010900373260.02500.16240.007-0.010950393140.02530.17639.497-0.0111000412760.02570.18638.966-0.0111100451190.02640.24637.835-0.0131150469950.02690.28137.184-0.0141200488380.02740.32836.482-0.0151250506440.028035.711-0.015-0.015	400	16397	0.0237	-0.063	42.229	0.005
550227760.02350.03142.610-0.002600249050.02350.06642.490-0.005650270250.02370.09742.239-0.007700291290.02390.11641.878-0.008750312130.02410.13141.458-0.009800332750.02440.14540.997-0.010850353130.02470.15340.507-0.010900373260.02500.16240.007-0.010950393140.02530.17639.497-0.0111000412760.02570.18638.966-0.0111100451190.02640.24637.835-0.0131150469950.02690.28137.184-0.014120048380.02740.32836.482-0.0151250506440.028035.711-0.015-0.015	450	18516	0.0235	-0.034	42.470	0.003
600249050.02350.06642.490-0.005650270250.02370.09742.239-0.007700291290.02390.11641.878-0.008750312130.02410.13141.458-0.009800332750.02440.14540.997-0.010850353130.02470.15340.507-0.010900373260.02500.16240.007-0.011950393140.02530.17639.497-0.0111000412760.02570.18638.966-0.0111100451190.02640.24637.835-0.0131150469950.02690.28137.184-0.0141200488380.02740.32836.482-0.0151250506440.028035.711	500	20644	0.0235	-0.003	42.600	0.000
650270250.02370.09742.239-0.007700291290.02390.11641.878-0.008750312130.02410.13141.458-0.009800332750.02440.14540.997-0.010850353130.02470.15340.507-0.010900373260.02500.16240.007-0.010950393140.02530.17639.497-0.0111000412760.02570.18638.966-0.0111100451190.02640.24637.835-0.0131150469950.02690.28137.184-0.0141200488380.02740.32836.482-0.0151250506440.028035.711	550	22776	0.0235	0.031	42.610	-0.002
700291290.02390.11641.878-0.008750312130.02410.13141.458-0.009800332750.02440.14540.997-0.010850353130.02470.15340.507-0.010900373260.02500.16240.007-0.010950393140.02530.17639.497-0.0111000412760.02570.18638.966-0.0111050432110.02600.21338.426-0.0121100451190.02640.24637.835-0.0131150469950.02690.28137.184-0.014120048380.02740.32836.482-0.0151250506440.028035.711-0.015-0.015	600	24905	0.0235	0.066	42.490	-0.005
750312130.02410.13141.458-0.009800332750.02440.14540.997-0.010850353130.02470.15340.507-0.010900373260.02500.16240.007-0.010950393140.02530.17639.497-0.0111000412760.02570.18638.966-0.0111050432110.02600.21338.426-0.0121100451190.02640.24637.835-0.0131150469950.02690.28137.184-0.014120048380.02740.32836.482-0.0151250506440.028035.711-0.015	650	27025	0.0237	0.097	42.239	-0.007
800332750.02440.14540.997-0.010850353130.02470.15340.507-0.010900373260.02500.16240.007-0.010950393140.02530.17639.497-0.0111000412760.02570.18638.966-0.0111050432110.02600.21338.426-0.0121100451190.02640.24637.835-0.0131150469950.02690.28137.184-0.0141200488380.02740.32836.482-0.0151250506440.028035.711-0.014-0.014	700	29129	0.0239	0.116	41.878	-0.008
850353130.02470.15340.507-0.010900373260.02500.16240.007-0.010950393140.02530.17639.497-0.0111000412760.02570.18638.966-0.0111050432110.02600.21338.426-0.0121100451190.02640.24637.835-0.0131150469950.02690.28137.184-0.0141200488380.02740.32836.482-0.0151250506440.028035.711-0.014-0.014	750	31213	0.0241	0.131	41.458	-0.009
900373260.02500.16240.007-0.010950393140.02530.17639.497-0.0111000412760.02570.18638.966-0.0111050432110.02600.21338.426-0.0121100451190.02640.24637.835-0.0131150469950.02690.28137.184-0.0141200488380.02740.32836.482-0.0151250506440.028035.711-0.014	800	33275	0.0244	0.145	40.997	-0.010
950393140.02530.17639.497-0.0111000412760.02570.18638.966-0.0111050432110.02600.21338.426-0.0121100451190.02640.24637.835-0.0131150469950.02690.28137.184-0.0141200488380.02740.32836.482-0.0151250506440.028035.711	850	35313	0.0247	0.153	40.507	-0.010
1000412760.02570.18638.966-0.0111050432110.02600.21338.426-0.0121100451190.02640.24637.835-0.0131150469950.02690.28137.184-0.0141200488380.02740.32836.482-0.0151250506440.028035.711	900	37326	0.0250	0.162	40.007	-0.010
1050432110.02600.21338.426-0.0121100451190.02640.24637.835-0.0131150469950.02690.28137.184-0.0141200488380.02740.32836.482-0.0151250506440.028035.711	950	39314	0.0253	0.176	39.497	-0.011
1100 45119 0.0264 0.246 37.835 -0.013 1150 46995 0.0269 0.281 37.184 -0.014 1200 48838 0.0274 0.328 36.482 -0.015 1250 50644 0.0280 35.711	1000	41276	0.0257	0.186	38.966	-0.011
1150 46995 0.0269 0.281 37.184 -0.014 1200 48838 0.0274 0.328 36.482 -0.015 1250 50644 0.0280 35.711	1050	43211	0.0260	0.213	38.426	-0.012
1200 48838 0.0274 0.328 36.482 -0.015 1250 50644 0.0280 35.711	1100	45119	0.0264	0.246	37.835	-0.013
1250 50644 0.0280 35.711	1150	46995	0.0269	0.281	37.184	-0.014
	1200	48838	0.0274	0.328	36.482	-0.015
1300 52410	1250	50644	0.0280		35.711	
	1300	52410				

This document and any information or descriptive material contained therein has been communicated in confidence and is the copyright property of the Open University. Neither the whole nor any extract may be disclosed, loaned, copied or used for either manufacturing, tendering or other purposes without the University's written consent.