POLITECNICO DI MILANO

Rosetta-SD2

To Planetary Science Archive Interface Control Document

RLGS-SPEC-SONC_DPS-SCIE-9032-CNES SOP-RSSD-TPL-001

Issue 1.3

27 June 2016

Prepared by: SD2 Team and SONC

Approved by: Amalia Ercoli Finzi

To Planetary Science Archive Interface Control Document

Document No. Issue/Rev Date Page : SOP-RSSD-TPL-001 : 1/3 : 27 June 2016 : 2

Distribution List

Recipient	Organisation
Amalia Ercoli Finzi	Politecnico di Milano
Franco Bernelli-Zazzera	Politecnico di Milano
Pierluigi Di Lizia	Politecnico di Milano
Giacomo Gori	Politecnico di Milano
Mario Salatti	ASI
Enrico Flamini	ASI
SONC	CNES
LCC	DLR

Document No. Issue/Rev Date Page

Change Log

Date	Sections Changed	Reasons for Change
23/12/2010	Creation of Issue 1 Revision 0	Delivery of Issue 1.0 to PSA after peer review
27/07/2015	Updated: 1.8 Contact names and addresses Added: 3.2.2.7 Spacecraft Clock Count in PDS Labels Deleted: 3.4.3.3.2 Geometric Index File 3.4.3.5 Geometry Directory	Updated for the Comet phase
17/02/2015	Updated: 1.5; 2.5.5; 3.1.1; 3.4; 4.2	Updated based on Data Reviewer's RIDs

TBD ITEMS

Section	Description

To Planetary Science Archive Interface Control Document

Table Of Contents

1	Intr	oduction	3	
	1.1	Purpose and Scope	3	
	1.2	Archiving Authorities		
	1.3	3 Contents		
	1.4	Intended Readership		
	1.5	Applicable Documents		
	1.6	Relationships to Other Interfaces		
	1.7	Acronyms and Abbreviations		
-	1.8	Contact Names and Addresses		
2		erview of Instrument Design, Data Handling Process and Product Generation		
	2.1	SYSTEM OVERVIEW		
	2.2	MECHANICS	8	
	2.3	Scientific Objectives		
	2.4	Data Handling Process		
3	2.5 2.5. 2.5. 2.5. 2.5. 2.5. 2.5. 2.5.	 Sub-System Tests	14 14 14 14 14 14 14 14 15 15 15 15 15 16	
	3.2 3.2. 3.2. 3.2.	2 Time Standards		
	3.3 3.3.	Data Validation 1 Data Quality ID		
	3.4 3.4. 3.4. 3.4.	2 Data Set		
4	Dete	ailed Interface Specifications		
	4.1	Structure and Organization Overview	27	
	4.2	Data Sets, Definition and Content		

Document No.	
Issue/Rev	
Date	
Page	

: SOP-RSSD-TPL-001 : 1/3 : 27 June 2016 : 2

4	l.3 Da	ata Product Design	
	4.3.1	Data Product Design of raw SD2 data (level 1)	
	4.3.2	Data Product Design of calibrated SD2 SC data (level 3)	
	4.3.3	Data Product Design of calibrated SD2 HK data (level 3)	
5	Append	dix A : Available Software to read PDS files	
		dix A : Available Software to read PDS files dix B : Example of PDS label for SD2 HK level 3 data product	

Document No. Issue/Rev Date Page : SOP-RSSD-TPL-001 : 1/3 : 27 June 2016 : 3

1 Introduction

1.1 Purpose and Scope

The purpose of this EAICD (Experimenter to (Science) Archive Interface Control Document) is two fold. First it provides users of the SD2 instrument with detailed description of the product and a description of how it was generated, including data sources and destinations. Secondly, it is the official interface SD2 experiment and the archiving authority.

1.2 Archiving Authorities

The Planetary Data System Standard is used as archiving standard by

- NASA for U.S. planetary missions, implemented by PDS
- ESA for European planetary missions, implemented by the Research and Scientific Support Department (RSSD) of ESA

ESA's Planetary Science Archive (PSA)

ESA implements an online science archive, the PSA,

- to support and ease data ingestion
- to offer additional services to the scientific user community and science operations teams as e.g.
 - o search queries that allow searches across instruments, missions and scientific disciplines
 - several data delivery options as
 - direct download of data products, linked files and data sets
 - ftp download of data products, linked files and data sets

The PSA aims for online ingestion of logical archive volumes and offers the creation of physical archive volumes on request.

Document No. Issue/Rev Date Page

1.3 Contents

This document describes the data flow of the SD2 instrument on Rosetta from the s/c until the insertion into PSA. It includes information on how data were processed, formatted, labelled and uniquely identified. The document discusses general naming schemes for data volumes, data sets, data and label files. Standards used to generate the product are explained. Software that may be used to access the product is explained. The design of the data set structure and the data product is given.

1.4 Intended Readership

The staff of archiving authority (Planetary Data System for NASA, Planetary Science Archive for ESA) design team and any potential user of the SD2 data.

1.5 Applicable Documents

- AD 1. Planetary Data System Data Preparation Workbook, February 17, 1995, Version 3.1, JPL, D-7669, Part1
- AD 2. Planetary Data System Standards Reference, August 1, 2003, Version 3.6, JPL, D-7669, Part2
- AD 3. "CDMS SD2 Data Interface Control Document", SHARK-ICD-TS-043, October 2002, Revision G
- AD 4. CDMS Subsystem &Instruments Electrical Interface Definition (Extract from REID-A) and Generic Payload Control.
- AD 5. CDMS Command and Data Management System Subsystem Specification RO-LCD-SP-3101 29/08/2001, Issue 3, Rev. 5
- AD 6. CDMS Command and Data Management System Operation Manual RO-LCD-SW-3402 12/02/2001, Issue 1, Rev. 2
- AD 7. Rosetta Time handling RO-EST-TN-3165, issue 1 rev 0, February 9, 2004
- AD 8. "SD2 Subsystem User Manual", SD2-SUM-TS-011, October 2002, Revision E
- AD 9. "Rosetta Lander SD2 Subsystem Specification", SHARK-AB-TS-003, May 2001, Revision E
- AD 10. "SD2 Software User Requirement Document", SHARK-URD-TS-067, June 2001, Revision E
- AD 11. RO-EST-RS-3001/EID A, Mission Operations Requirements, Issue 2, Rev. 2
- AD 12. RO-LAN-RD-3111, Rosetta Lander Experiment Interface Document, REID-A
- AD 13. DDID- Data Delivery Interface Document RO-ESC-IF-5003 Issue C2 21/02/2006
- AD 14. ROSETTA Archive Generation, Validation and Transfer Plan, January 10, 2006, Issue 2, Rev. 3, RO-EST-PL-5011
- AD 15. ROSETTA Archive Conventions RO-EST-TN-3372 Issue 7, Rev. 9, 06 April 2015
- AD 16. CDMS DDD, RO-LCD-SW-3610, Issue 6 and above

1.6 Relationships to Other Interfaces

No products, software and documents would be affected by a change in this EAICD.

1.7 Acronyms and Abbreviations

CDMS	Command and Data Management System
CODMAC	Committee On Data Management, Archiving, and Computation
COSAC	Cometary Sampling And Composition
DDS	Data Disposition System
DECW	Data Error Control Word
EGSE	Electrical & Electronic Ground Support Equipment

Document No.: SOP-RSSD-TPL-001Issue/Rev: 1/3Date: 27 June 2016Page: 5

To Planetary Science Archive Interface Control Document

500	Electrical Our part Ourtern
ESS	Electrical Support System
FM	Flight Model
FS	Flight Spare
GRM	Ground Reference Model
нк	Housekeeping
НТО	High Temperature Oven
LOBT	Lander On Board Time
MPAe	Max Plank Institute for Aeronomy
МТО	Medium Temperature Oven
OBT	On Board Time
OBDH	On Board Data Handling
OOBT	Orbiter On Board Time
PDS	Planetary Data System
PECW	Packet Error Control Word
PID	Process Identifier
PSA	Planetary Science Archive
QM	Qualification Model
RF	Radio frequency
SC	Science
SCET	Spacecraft Event Time
SD2	Sample Drill & Distribution System
SFDU	Standard Formatted Data Unit
SONC	Science Operations and Navigation Center (CNES-Toulouse)
ТВС	To Be Confirmed
UTC	Universal Time Coordinated

1.8 Contact Names and Addresses

Name	Company/University	e-mail
Amalia Ercoli Finzi	Politecnico di Milano	amalia.finzi@polimi.it
Franco Bernelli Zazzera	Politecnico di Milano	franco.bernelli@polimi.it
Pierluigi Di Lizia	Politecnico di Milano	pierluigi.dilizia@polimi.it
Piergiovanni Magnani	Selex ES	piergiovanni.magnani@selex-es.com

Document No. Issue/Rev Date Page

2 Overview of Instrument Design, Data Handling Process and Product Generation

The SD2 experiment provides samples collected at different depths to microscopes and evolved gas analysers.

The primary characteristics of SD2 are summarised below:

- capable to drill the surface and to collect samples (tens of mm³) at different controllable depth up to 230mm (assuming a clearance between the Lander Balcony and comet surface of 300 mm);
- capable to move and distribute the collected samples to the different scientific instruments (visible and I/R microscope, gas volatile analysers);
- capable to cope with the expected Comet material properties (e.g. hardness in the range from fluffy snow to some MPa);
- compatibility with the extreme temperature environmental condition (for the electromecanics down to 160°C for storage and –140°C operative);
- compatibility with vacuum environment;
- compatibility with the long inactivity time at extreme environmental condition (9 years during cruise);
- no thermal and chemical contamination are allowed to the sample material;
- challenging mass and power budgets: ~5 kg and 10 W average including mechanics and electronics.

The SD2 system has been conceived as a four degrees of freedom (d.o.f.) robotic system. Particular importance has been given to the tribological and to the reliability aspects. Indeed all materials, processes and technological solutions have been carefully selected in order to cope with the given conditions, specifically:

- solid and self lubrication;
- brushless actuation and sensors;
- low friction/ antijamming approaches;
- cutting technology (for all range of materials);
- low power consumption and radiation resistant electronics;
- special composite material approach.

2.1 SYSTEM OVERVIEW

The subsystem consists of:

- Mechanical Unit;
- Electronic Unit (with embedded SD2 software);
- Harness (electrically connects Mechanical and Electronic Units)

A picture of SD2 is reported in Figure 1.

To Planetary Science Archive Interface Control Document Document No. Issue/Rev Date Page : SOP-RSSD-TPL-001 : 1/3 : 27 June 2016 : 7

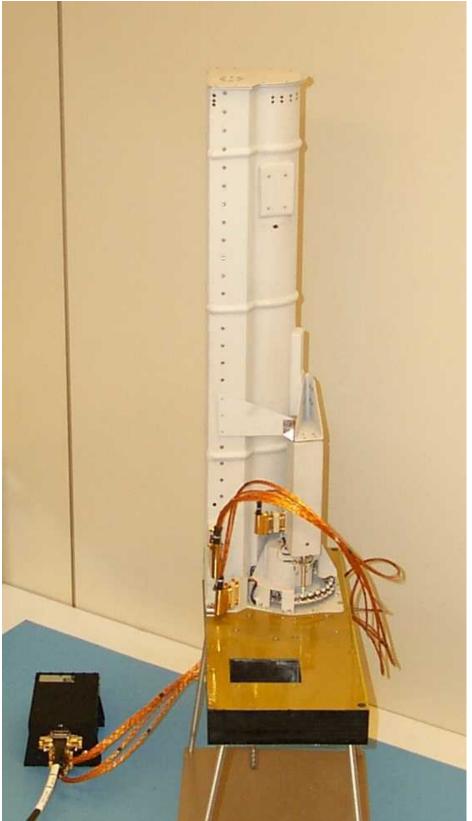


Figure 1 : SD2 system

Control Document

To Planetary Science Archive Interface

Document No. Issue/Rev Date Page : SOP-RSSD-TPL-001 : 1/3 : 27 June 2016 : 8

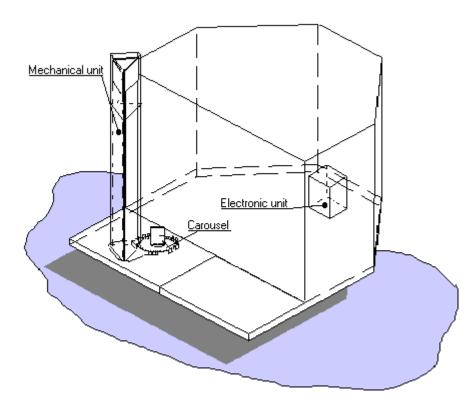


Figure 2 Accommodation of the SD2 subsystem on the Lander

Accommodation of SD2 units on the Lander is outlined in Figure 2. The Mechanical Unit is mounted on the Lander Balcony while the Electronic Unit is installed in the warm compartment of the Lander.

The total mass of the SD2 Subsystem is ~ 5.1 kg:

- Mechanical Unit ~ 3700 g;
- Electronic Unit ~ 1000 g;
- Harness ~ 400 g.

Power consumption of SD2 during operations does not exceed the following levels:

- Average power consumption in stand by 1.5 W;
- Average power consumption during drilling/sampling operations 6.0 W;
- Max power consumption during drilling/sampling operations 14.5 W.

2.2 MECHANICS

The SD2 Mechanical Unit configuration and main dimensions are reported in Figure 3:

SD2 center of gravity:	X = 80 mm from right s Y = 72 mm from rear s Z = 320 mm from interf	ide of ba	se plate placed a	at the bottom
Carousel position:	X = 7,5 mm (In SD2 reference syste	Y = 54 m)	mm	Z = Not relevant

Document No.	
Issue/Rev	
Date	
Page	

: SOP-RSSD-TPL-001 : 1/3 : 27 June 2016 : 9

Drill bit center at zero position: X = -14 mm Y = 6,5 mm Z = -283 mm (In SD2 reference system)

The Unit consists of the following main components (as shown in Figure 3):

- Tool Box
- Carousel/Base Plate
- Volume Checker
- Ovens

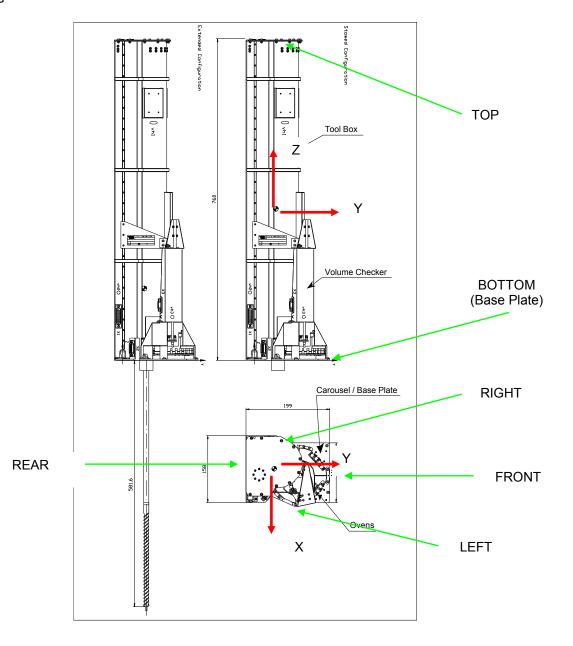


Figure 3 SD2 system in stowed and extended configuration

To Planetary Science Archive Interface Control Document Document No. Issue/Rev Date Page : SOP-RSSD-TPL-001 : 1/3 : 27 June 2016 : 10

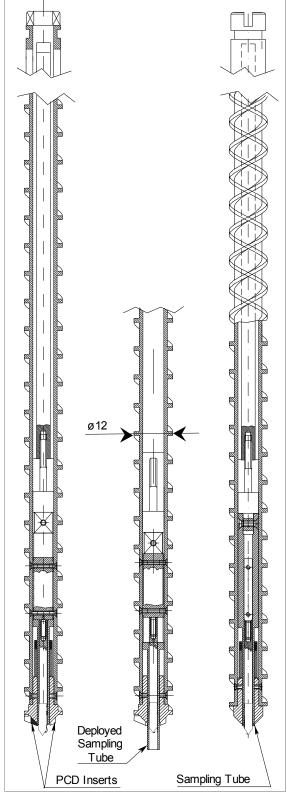


Figure 4 Drill Tool.

See 3.2.3 for more details about SD2 reference systems.

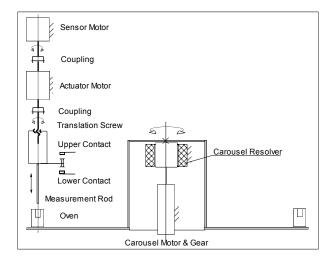
Document No.	: SOP-RSSD-TPL-001
Issue/Rev	: 1/3
Date	: 27 June 2016
Page	: 11

The **Tool Box** contains the mechanisms in charge of performing drill and sample acquisition functions in a protective structural shell, which avoids external contamination on the tools and the actuators inside.

The drill bit is assembled by utilising polycristalline diamonds capable to cope with hard soil. The position, shape and geometry of the inserts are optimised by analysis and tests.

The drilling and sampling functions are integrated in a unique auger. With this configuration there is the certainty to collect the sample at the established/measured depth, preventing hole collapsing during sampling tool actuation. The Drill / Sampler Tool is shown in Figure 4.

The Drill / Sampler Tool has two degrees of freedom: translation – to approach and penetrate the comet surface – and rotation around its axis. It also includes an actuator for the sample collecting/discharging mechanism.


During the final phase of the drilling operation, the sampling mechanism collects the sample; soil sample is then placed into an oven for the subsequent scientific analysis.

To actuate the sampling tube, a dedicated mechanism, based on an electromagnet, has been designed. The design is such that there are no sliding contacts or rotating parts directly in contact with non-rotating parts.

The main dimensions of the auger (pitch, diameter and thickness) are a compromise of the proportions normally used for drill tools, the tests' results of the Rosetta CNSR-SAS project (performed by a team lead by Tecnospazio for ESA) and dedicated theoretical analysis and simulations.

The reference system of drill has the zero position when SD2 is in stowed configuration (see Figure 3). The zero position allows the rotation of carousel and the position is positive towards downward translations. Negative value of PME1 (Position of resolver #1 - drill translation - see **Table 2-1**) is allowed in order to reach the launch configuration (-0.7 mm).

The **Carousel** is a rotating disc that accommodates the ovens, which will contain the collected sample material, for the distribution to the scientific instrumentation.

Figure 5 Carousel and Volume Checker Kinematics

The Carousel kinematics is shown in

Figure 5.

The **Ovens** provide the interface between the collected sample and the scientific instruments: a visible microscope, an I/R microscope and two envolved gas analyser stations. Two kinds of Ovens are available:

Document No. Issue/Rev Date Page : SOP-RSSD-TPL-001 : 1/3 : 27 June 2016 : 12

- Medium Temperature Ovens (MTOs) with an optical sapphire prism, suited for the analysis by visible and I/R microscope before heating up for medium temperature experiment (+180°C),
- High Temperature Ovens (HTOs, provided by MPAe) suited for sample heating for high temperature experiments (+800°C).

There are 10 MTOs and 16 HTOs installed on the Carousel disc.

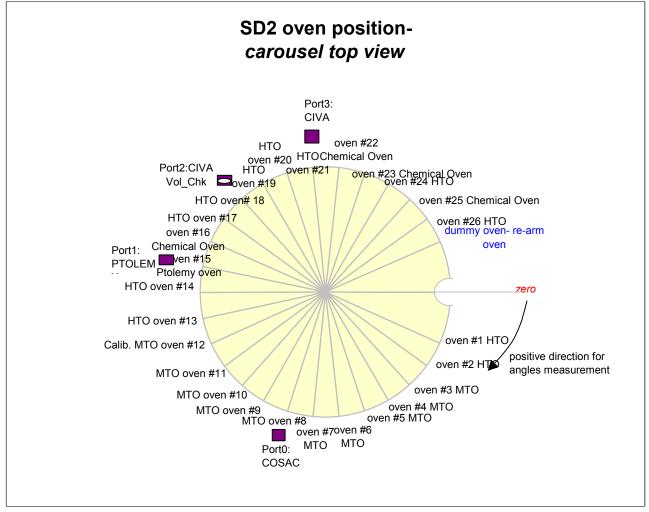


Figure 6 Reference system of carousel

The reference system of the carousel is shown in Figure 6. The position zero is the position that allows drilling (hole of carousel under drill). Figure 6 illustrates a top view of the carousel. Clockwise movements of the carousel correspond to increasing values of PME2 (arcmins), whereas counterclockwise movements are associated to decreasing values of PME2 (arcmins). The movement starts from zero position. Moving counterclockwise, the subsequent value of PME2 is 21599 arcmins.

The **Volume Checker** is a mechanism that measures the amount of sample discharged into the oven. It is based on a translating rod that is lowered and pressed into the filled oven. A displacement sensor allows to determine the volume of the deposited material. Furthermore, for the Ovens provided with the optical prism, the volume checker promotes a homogeneous distribution of the collected material on the optical window.

The Volume Checker kinematics is shown in Figure 5.

Document No.	
Issue/Rev	
Date	
Page	

Reference system of Volume Checker is not relevant, as it is based on a differential measurement. So the zero position has not been fixed and depends on which oven is used for the sampling.

The science provided by SD2 are summarized in Table 2-1.

MEASURE	CODE	UNIT OF MEASURE
Resolver #1	PME1	Millimetre [mm]
Resolver #2	PME2	Arc minute [arcmin]
Drill Speed Rotation	RODRI	Round per Minute [RPM]
Status	OPST	N/A
Volume Checker Microswitch #1	VOLCHKSW1	ON/OFF
Volume Checker Microswitch #2	VOLCHKSW2	ON/OFF
Volume Checker Displacement #1	VC1	Millimetre [mm]
Volume Checker Displacement #2	VC2	Millimetre [mm]
Volume Checker Displacement #3	VC3	Millimetre [mm]
Volume Checker Displacement	VCD	Millimeter [mm]

Table 2-1: Scientific measure made by SD2 (for details about each parameter refer to AD 3 and AD 4)

2.3 Scientific Objectives

The goal of SD2 is to drill the comet soil, take samples of the comet surface, and make them available to the experiments CIVA, COSAC and PTOLEMY following their requirements. In addition, based on the telemetry, we can provide the depth at which the sample was collected and the volume of the samples. These tasks are performed during the "on comet phase".

Table 2-1 reports the measurements providing the scientific data to evaluate the sample collected. The data are collected in .rolbin files and transformed in Level 1 data in .spr (scientific data) and .csv (Housekeeping data) files. All kind of files are collected and archived.

2.4 Data Handling Process

The SONC is responsible for SD2 data sets generation and delivery to the PSA.

The SD2 telemetry data is provided by the ESA DDS (Data Distribution Server). Following the operations plan, SONC pulls out archived packets (SC and HK) by direct request to the DDS via FTP and stores them into SONC database. The raw data are passed through the SONC data processing software for decommutation, conversion to physical values and calibration. The calibrated data are also stored into SONC database.

Science (SC) and Housekeeping (HK) <u>raw data</u> are available through W3-SONC server (<u>http://soncv2-rosetta.cnes.fr</u>) and the authorized users can get them for a selected time interval as binary files with .rolbin extension. To read and to understand the raw data the user shall refer to AD 3 and AD 4, and use the software developed to display the raw data in a readable way.

The software called SD2-Telemetry Analyser (SD2-TA) is the EGSE software developed to read the raw data. It does not calibrate the data. Geometry of SD2 hardware is showed in AD 3 and AD 4.

<u>Calibrated SC data</u> are available through W3-SONC server and authorized users can get refined data for a selected time interval as ASCII files with .spr extension (directly readable).

<u>Calibrated HK data</u> are available through W3-SONC for a selected time interval as ASCII files with .csv extension (directly readable).

The W3-SONC provides interactive plots of SD2 data (drill and carousel position).

Issue/Rev : 1/3	
Date : 27 Jur Page : 14	าе 2016

After the proprietary period, the SONC team provides the raw data, refined data and plots to the ESA -PDS team. The delivery format is described in this document.

The people involved in receiving and processing data of SD2 are listed in Table 2-2.

Responsibilities	Name	Industry / Institute
Principal Investigator	Amalia Ercoli Finzi	Politecnico di Milano
Co – Principal Investigator	Franco Bernelli Zazzera	Politecnico di Milano
Industrial Responsible	Piergiovanni Magnani	Selex ES
Responsable of on ground data handling	Pierluigi Di Lizia	Politecnico di Milano
SONC data processing and PDS generation	Philippe Gaudon	CNES

Table 2-2 : People involved in data processing

2.5 Overview of Data Products

2.5.1 Pre-Flight Data Products

No ground data are present in archive.

2.5.2 Sub-System Tests

GRM test data both pre-flight and on-mission phase are archived.

2.5.3 In-Flight Data Products

The in-flight data correspond to all the on board data. They can be produced during three mission phases:

- Commissioning phase (CVP) : the first phase of flight (2004)
- Cruise (CRU) : the second phase of flight (2005-2014)
- Post Hibernation Commissioning (PHC) phase (April 2014)
- Pre Delivery Calibration Science (PDCS) phase (July to October 2014)
- First Science Sequence (FSS) phase (November 2014)

The data, both scientific and housekeeping, are listed in Documents AD 3 and AD 4 and they describe the behaviour of the instrument. The housekeeping data are automatically collected from CDMS when SD2 is powered, (about one frame each 4 minutes).

The SC data are collected by SD2 into an internal circular buffer, at frequency specified by user, dimension of buffer is fixed (64 packets). So it is possible to collect data either in short period at high frequency and in long period at low frequency. The SC data are dumped only by command MHIT (see AD 3). The presence of some science data in the housekeeping frame allows monitoring the health status of SD2 without requiring the dump of SC data.

2.5.4 Software

In order to ease reading the content of data packets archived in the PDS archive, a software called SD2-TA is provided to archive (see § 3.4.3.5).

The software is able to load packets from ".rolbin" file, to read the raw data and to display the data in readable form. Moreover SD2-TA is able to save file ".out" with the refined data. A user manual of SD2-TA is delivered with the program to the PDS Archive. Note: as the Level 2 data are archived, the EGSE software usage shouldn't be needed.

2.5.5 Documentation

The documentation directory contains the following documents:

Document No. Issue/Rev Date Page

- To Planetary Science Archive Interface Control Document
- CDMS SD2 Data Interface Control Document [AD 3]
- SD2 subsystem user manual [AD 8]
- SD2 Specification [AD 9]
- SD2 Software User Requirement Document [AD 10]
- Mission Operations Requirements [AD 11]
- Rosetta Lander Experiment Interface Document [AD 12]
- EAICD (Present document)
- RL-SD2-LOGBOOK.TXT, logbook of SD2 activities
- TIMELINE_ph.TXT, timeline Ascii file for phase ph
- TIMELINE_ph_DESC.TXT, description of the timeline file for phase ph
- TIMELINE_ph_obty.PNG, timeline Image file for phase ph and observation type obty

3 Archive Format and Content

3.1 Format and Conventions

Data processing level number used in SD2 naming scheme conforms to CODMAC norm:

- Raw Data (codmac 1) : Telemetry data with data embedded.
- Calibrated Data (codmac 3) : Edited data that are still in units produced by instrument, but that have been corrected so that values are expressed in or are proportional to some physical unit such as radiance. No resampling, so edited data can be reconstructed (NASA Level 1A).

3.1.1 Deliveries and Archive Volume Format

Six data sets are delivered, one for data from the Ground Reference Model (GRND) and one for each of the following mission phases: commissioning (CVP), cruise phase (CRU), post-hibernation commissioning (PHC), pre-delivery calibration and science (PDCS), and first science sequence (FSS). Each data set contains:

- all the raw data contained in .DAT files (both packet HK and SC mixed), in RAW directory. The raw data correspond to CODMAC level 1.
- SC data level 1 in .TAB file (CODMAC level 3)
- HK calibrated data in .TAB file (CODMAC level 3)
- Plots of drill position (word 0 of SD2 SC telemetry) in .png file (CODMAC level 3)
- Plots of carousel position (word 1 of SD2 SC data telemetry) in .png file (CODMAC level 3)
- Plots of drill position (word 5 of SD2 HK telemetry) in .png file (CODMAC level 3)
- Plots of carousel position (word 6 of SD2 HK telemetry) in .png file (CODMAC level 3)
- Software

3.1.2 Data Set ID Formation

The following naming formation scheme is used for the data sets:

- DATA_SET_ID = <INSTRUMENT_HOST_ID>-<target id>-<INSTRUMENT_ID>-<data processing level number>-<mission phase abbreviation>-<version>
- DATA_SET_NAME = <INSTRUMENT_HOST_NAME>-<target name>-<INSTRUMENT_ID>-<data processing level number>-<mission phase abbreviation>-<description>-<version>

<u>Note</u>: The description field for the DATA_SET_NAME is used only for the GRND mission phase.

See appendix F (16.1.1, 16.1.2) of Archive Plan Issue 2/1.

Examples of DATA_SET_ID and DATA_SET_NAME for SD2 data obtained from the Ground Refrence Model:

DATA_SET_NAME= "ROSETTA-LANDER CAL SD2 3 GRND GRM-TEST V1.0"

DATA_SET_ID = "RL-CAL-SD2-3- GRND-V1.0"

3.1.3 Data Directory Naming Convention

The DATA directory of each data set contains subdirectories named CALIBRATED and RAW. The RAW directory contains all the files with raw physical data (telemetry packets, CODMAC level 1). The CALIBRATED directory contains all files with calibrated data (CODMAC level 3).

3.1.4 Filenaming Convention

The following file naming scheme is used:

{exp}_{datatype}_{begin of observation}_{length of observation}.{ext}

- exp (3 character) = SD2
 - datatype (3 character) = XYZ
 - \circ X = G for Ground, F for Flight
 - Y = S for Science Data, **H** for Housekeeping Data, **B** for files with both data mixed together
 - Z = CODMAC level : 1 for raw Data, 3 for calibrated Data, P for Plots
 - begin of observation (12 characters) = time of test or working session yymmddhhmnss:
 - yy = year
 - mm = month
 - o dd = day
 - hh = hour
 - mn = minute
 - \circ ss = second
- length of observation (4 character) = duration of test or working session expressed in minutes. A file do
 not contain more than 7 days of data
 - **ext** = extension of file. For SD2 the files can be:
 - o .DAT for Raw Data containing HK and SC data mixed together (CODMAC level 1)
 - .TAB for calibrated Data containig SC Data (CODMAC level 3)
 - o .TAB for calibrated Data containig HK Data (CODMAC level 3)
 - .PNG for Plot Data in BROWSE directory (plots of SPR and CSV data)

Example: SD2_FS3_041005204117_0021.TAB. This file begins at 2004/10/05 20:41:17 and contains 21 minutes of SD2 calibrated flight Science data

We consider the **observation** starts for the beginning of mission plan until the dump of science data (end of mission plan). During this phase we have in rolbin files HK and SC data mixed. The raw data are splitted into spr file (containing only SC data) and csv file (containing HK data).

The HK data for a single observation start: from the SD2 powered (if we are collecting data of the first observation) till the end of mission plan (dump of SC data), or from the end of previous observation (dump of previous SC data) till the end of following observation (dump of following SC data). In this way we have for each observation one rolbin file, one spr (SC data) file and one csv (HK data) file.

3.2 Standards Used in Data Product Generation

3.2.1 PDS Standards

PDS Standard version 3.6 was used for the design of the ROSETTA-SD2 archive.

3.2.2 Time Standards

3.2.2.1 Generalities

This paragraph gives a summary of the different existing formats in the Rosetta Ground segment, from their generation by the instruments to their availability at SONC:

- The Lander CDMS requires the scientific instruments to transmit the data by bursts of 8 or 64 bytes (4 or 32 16-bit words)
- When sufficient data are received, the CDMS builds packets containing 256 bytes of instrument data. The CDMS adds 18 bytes header (unit PID, sequence count, OOBT: Orbiter OBT, data type) and a 2 bytes checksum (DECW) and creates packets with a fixed length of 276 bytes¹. For transmission between Lander and Orbiter, a 4 bytes synchro header and a 2 bytes trailing checksum (PECW) are added, increasing the packet size to 282 bytes. The extra bytes are removed by the ESS.

To comply with ESA requirements, the time registered in the CDMS packets is the **OOBT**. It is reconstituted from the LOBT, as shown in Figure 7:

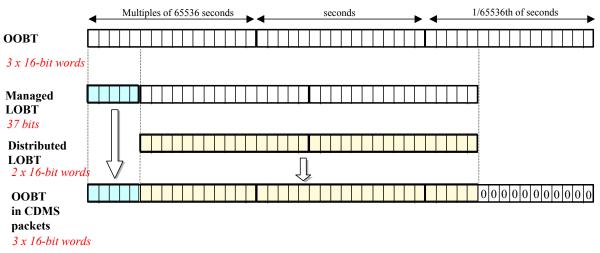
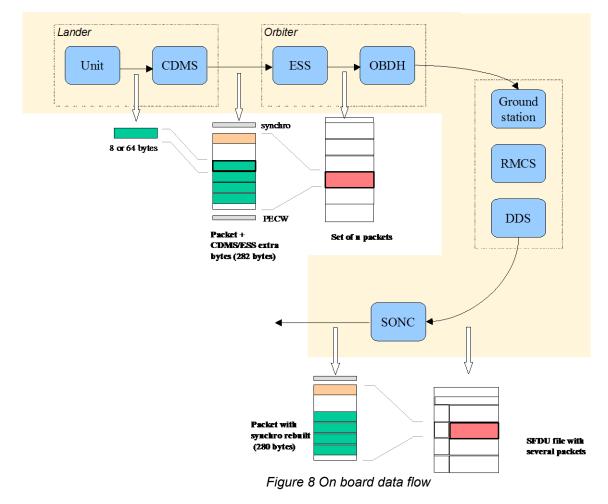


Figure 7 Reconstruction of on board time in CDMS packets

• The ESS groups together several packets and passes them to the Orbiter OBDH, which transmits them according to the Space/Ground interface. This part is transparent for the Lander ground segment.


¹ The Lander CDMS header and the headers of the telemetry source packets from the Orbiter instruments are quite similar. There is a difference in the data field header. The byte containing PUS version, checksum flag and spare fields is set to zero in the CDMS header. Besides the last byte of the OOBT is set to zero in the CDMS header. The CDMS header has an additional word (2 bytes) after the data field header named "FORMAT ID". This word is mainly used for HK data and it contains the HK scanning period and the SID (structure identification).

Document No. Issue/Rev Date	: SOP-RSSD-TPL-001 : 1/3 : 27 June 2016
Page	: 18

- The data are delivered by the Rosetta Data Distribution System (DDS) to the SONC in SFDU format. A SFDU file is basically a collection of 276-byte packets interspersed with auxiliary information records. An 18 bytes SFDU header is added to the CDMS 276-byte packets. This header contains information added at the ground station (time correlated OBT, ground station id, virtual channel id, service channel, type of data, time quality)
- SONC processes the SFDU files to retrieve the 276-byte packets. This format is available in the SONC database.

The relationship between both time formats (OOBT and LOBT) is given in AD 16.

• Afterwards, SONC processes science raw packets in order to recompose the science measurement (e.g. an image, a spectrum, etc.).

Figure 8 gives an overview of this data flow.

The following principles are applied:

- the packet wrapping is removed, and science frames that had to be split into several raw data packets are rebuilt. Basic error detection controls are applied, to recover from possible problems in the transmission chain.
- the Lander On-Board time (LOBT) (synchronised with OOBT) extracted from the packet, and corresponding UTC time coming from the SFDU header, are added.

SD2-ROSETTADocument No.: SOP-RSSD-TPL-001To Planetary Science Archive Interface
Control DocumentDate: 27 June 2016Page: 19

- UTC time is calculated from the On-Board time taking into account the On-Board clock drift as following : UTC (seconds since 01/01/1970) = LOBT(seconds) * Gradient + Offset (these coefficients are extracted from TCP packets delivered by DDS). LOBT is either the LOBTextracted from CDMS header or the Experiment internal clock when it exists (CIVA, COSAC, PTOLEMY, ROMAP, ROLIS, SESAME). In the last case, it must be taken into account that the Internal clock (32 bits) resets all 4 years, 4 months, 3 days (first reset : 03/04/2007 10 :42 :07).
- in few cases, bit fields are expanded : flags that were stored as bits in the telemetry (to save bandwidth) are stored as integer values instead ; the aim is to ease further processing. UTC time-stamped Science and HK data are available in the SONC database and used to generate PDS format.

3.2.2.2 SD2 Time standards

The time standards used in the SD2 data products are:

- the SD2 on-board time
- the Lander on-board time
- the DDS header time correlated
- the UTC

SD2 software maintains an internal timing, which starts up at SD2 power on. This time is used both to synchronize the SD2 software tasks and to timestamp the telemetry data, both scientific and the housekeeping frames. The time reported in the telemetry is evaluated by SD2 as the time received by means of the RTIM CDMS standard command updated by the time elapsed between the reception of last RTIM command and the time when the telemetry data generation started. The time is reported in word #12 of housekeeping data (unit is second), and in words #11 and #12 of scientific data (unit is 31.25 millisecond). The SC data are generated by SD2 with a frequency that can be set by the command MHIT. The SC data are collected by CDMS when the dump of them is commanded. When the electronic of SD2 is on, HK frames are collected by CDMS with a frequency of about 4 minutes per frame. The On Board Time of each packet is the time when the packet is collected by CDMS.

3.2.2.3 The SD2 On-Board Time

The time standard used in HK and SC data (**SD2 On-Board Time**) is the time used by CDMS. In SC data there are two words:

- On Board Time Low (16 bit, unit in 31.25 ms)
- On Board Time medium (16 bit, unit in (2¹⁶ * 31.25) ms)

In HK data there is one word (16 bit, unit in seconds). The SD2 telemetry Time is synchronised with CDMS time for HK and SC data frames.

3.2.2.4 The Lander On-Board Time (LOBT)

The instruments on board the spacecraft (Orbiter) generate telemetry source packets with an OOBT (orbiter on board time) time stamp in the header. The OOBT written into the packet header specifies the time, when CDMS can complete a packet.

In terms of HK packets, this is the time of the last HK word. Using the HK scanning rate, which is given in word #9 of the packet, one can calculate the OBT of every individual word in this packet. Note that this is only valid if packets with SID (word #9) 1 or 2 are generated. Packets with SID 4 and 5 are "snapshots", which means you can apply the packet OOBT for every word in this packet. SID 3 packets have to be analysed case by case.

In terms of SC packets this is the receiption of the last 32 word block by CDMS, which also completes the SC packet. How often 32 word blocks are created (and sent) by the unit, and corresponding to this the delta time

: SOP-RSSD-TPL-001
: 1/3
: 27 June 2016
: 20

between each block, might be different for each unit. So, re-calculation of OOBT for SC words depends on this unit feature.

The Orbiter On-Board Time (OOBT) is a linear binary counter having a resolution of 1/65536 sec stored in 3 16-bit words.

The <u>Lander On-Board Time</u> (LOBT) is a linear binary counter having a resolution of 1/32 sec, kept in 37 bits. Only the 32 least significant bits are distributed to the instruments, in 2 16-bit words. The 5 most significant bits are supposed constant during most of the mission; they are available through a specific service.

The LOBT is derived from the Orbiter On-Board Time (OOBT): the 11 least significant bits of the OOBT are discarded to obtain the LOBT, hence the reduced resolution. A re-synchronization between OOBT and LOBT is performed regularly (see AD 5).

The Lander is synchronized prior to Separation and during every RF link after landing. So, during descent and the First Science Sequence this should not be a problem, since LOBT is kept synchronized as long as the Lander is powered.

Technical details about sychronisation of Lander On-board Time can be found in § 2.3.2.6 AD 5.

For a description of time handling in the Rosetta project see AD 7. For a description of Lander on board time handling see AD 5

- § 2.3.2.6 Synchronisation and Adjustment of Lander On-board Time
- § 2.3.2.6.1 Absolute vs. relative time references
- § 2.3.2.6.2 On-board Time Failure Modes and Recovery Procedures

and AD 6, § 6, for the Lander On-board Time.

3.2.2.5 The DDS header time correlated

The OOBT is converted to UTC (Coordinated Universal Time) by means of time correlation and included in the additional DDS packet header when the packets are distributed via the DDS server. The <u>DDS header time</u> <u>correlated</u> (SCET field in the DDS header) is the UTC of the start of measurement derived from the OOBT by time

Its format is the Sun Modified Julian Time (MJT) i.e. two 32 bit integers. The first (MSB) contains the number of seconds since 00:00:00 on 1st January 1970 and the second (LSB) integer the number of micro-seconds from seconds in the first field.

Time correlation is described in AD 13(Appendix 18 § 18.1.2.1).

3.2.2.6 The UTC (Universal Time Coordinated)

The <u>UTC</u> used as time stamp for the level 3 SC and HK SD2 data products is the DDS header time correlated.

3.2.2.7 Spacecraft Clock Count in PDS Labels

The PDS keywords SPACECRAFT_CLOCK_START_COUNT and SPACECRAFT_CLOCK_STOP_COUNT refer to LOBT. The LOBT is represented in the following format:

Document No. Issue/Rev Date Page

: SOP-RSSD-TPL-001 : 1/3 : 27 June 2016 : 21

SPACECRAFT_CLOCK_START/STOP_COUNT = "<reset number>/<unit seconds>.<fractional seconds>" The unit seconds and the fractional seconds are separated by the full stop character. **Note that this is not a decimal point.** The fractional seconds are expressed as multiples of 2-5 = 0,03125 seconds and count from 0 to 25 -1 = 31. E.g. in SPACECRAFT_CLOCK_START_COUNT = "3/356281394.21" the 21 fractional seconds correspond to 21 × 2-5 = 0.65625 decimal seconds. The reset number is an integer starting at 1, i.e. "1/" means LOBT = 0 at 2003-01-01T00:00:00 UTC.

3.2.3 Reference Systems

Three reference systems are used to evaluate the position of

- Drill translation
- Carousel Rotation
- Volume Checker displacement

Figure 9: SD2 reference system versus Balcony reference system

Drill Translation reference system

The position of drill can be retrieved from telemetry data in 1/100 of millimeter. The zero position is the position which allow the carousel to rotate. Positive value of drill position means that the drill has been moved down to perform a drilling phase. The range of values allowed are in range [-11,49; 625] mm (cf. AD 3).

Carousel Rotation reference system

The position of carousel has a relative reference system showed in Figure 9. It is relative to the angular position of carousel. The value of telemetry data related to carousel position is given in arc- minutes and can have a value in range [0; 21600]. During a movement if telemetry shows a increment of carousel position

Document No.	: SOP-RSSD-TPL-001
Issue/Rev	: 1/3
Date	: 27 June 2016
Page	: 22
-	

values this means that the carousel performs a clockwise rotation, if telemetry shows a decrement of carousel position values this means that the carousel performs a counter clockwise rotation (cf. AD 3).

Volume Checker reference system

The measurement of volume checker is performed as differential measurement. When the oven is empty the Volume Checker perform a measurement and the displacement is taken in memory. When the oven is filled the Volume Checker perform the second measurement and from the new displacement is subtract the first displacement. In this way the volume of sample is calculated knowing the area of the base of the oven where the sample is placed. So no reference system is necessary to evaluate the volume of sample (cf. AD 8).

3.3 Data Validation

The SD2 data products are delivered to PSA by SONC. The level 3 SC and HK data produced by SONC are validated by SD2 PI. These data are also distributed via the W3-SONC server and used by all Lander experiment teams.

3.3.1 Data Quality ID

SD2 science data contain information about functionality of system. No further refinement or calibration is required to evaluate the data. The user can read the raw data by the EGSE software to evaluate the status of SD2 and the movements performed. Due to the way SD2 collects data and the lack of calibration, the missing of one or more packets could not affect the quality of data.

Data quality table:

- -1 Not Assigned
- 0 Good Data
- 1 Missing science packets data not allow to evaluate the results of mission plan

3.4 Content

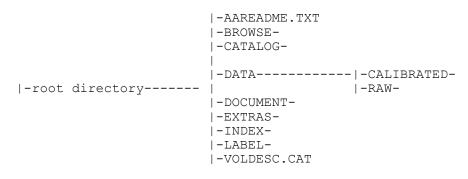
3.4.1 Volume Set

One volume corresponds to one data set. The possible values of VOLUME keywords can be found in [AD 15]. The volume keyword values for the Commissioning mission phase are given in the following example.

DESCRIPTION	=	"This volume contains Rosetta SD2 level 2 data products and supporting documentation from the Commissioning phase"
VOLUME ID	=	"RLSD22 1001"
VOLUME NAME	=	"SD2 RAW DATA FOR THE COMMISSIONING PHASE"
VOLUME SERIES NAME	=	"ROSETTA SCIENCE ARCHIVE"
VOLUME SET ID	=	"IT POLIMI AERO RLSD2 100X"
VOLUME SET NAME	=	"ROSETTA SD2 DATA"
VOLUME VERSION ID	=	"VERSION 1"
VOLUMES	=	1
VOLUME FORMAT	=	"ISO-9660"
MEDIUM TYPE	=	"ONLINE"
PUBLICATION_DATE	=	YYYY-MM-DD

3.4.2 Data Set

The SD2 data is archived in six data sets containing data from the Rosetta Lander Ground Reference Model (GRND), from the commissioning phase (CVP), from the Cruise phase (CRU), from the Post Hibernation Commisioning phase (PHC), from the Pre Delivery Calibration Science (PDCS) phase and from the First Science Sequence (FSS) phase.


Control Document

Issue/Rev Date To Planetary Science Archive Interface Page

Name element	Data Set ID	Data Set Name	
INSTRUMENT_HOST_ID / INSTRUMENT_HOST_NAME	RL (Rosetta Lander)	ROSETTA-LANDER	
Target id / target name	CAL for ground data, commissioning data, cruise data	CAL for ground data, commissioning data, cruise data 67P for Comet data	
	C for Comet data		
INSTRUMENT_ID / INSTRUMENT_NAME	SD2	SAMPLING, DRI	LLING AND DISTRIBUTION SUBSYSTEM
Data processing level number	3 (the highest data level in a data set; the data sets contain also level 1 data)		
mission phase abbreviation	GRND, Ground Reference Model		
	CVP, Commisioning phase		
	CRU, Cruise phase		
	PHC, Post Hibernation Commissioning		
	PDCS, Pre Delivery Calib Science		
	FSS, First Science Sequence		
description	N/A		GRM-TEST, Ground Reference Model data, for GRND.
			No description for the others.
version	The first version of a data set is V1.0 <u>Remark</u> : The cruise phase is composed of several phases (CR1, CR2,). The cruise data set is re-delivered after each cruise phase. However the version number is not changed with each delivery in order to avoid the modification of DATA_SET_ID/NAME values in the labels of all previous data products		

3.4.3 Directories

The SD2 archive have the following directory structure :

3.4.3.1 Root Directory

The root directory of SD2 contains the following files:

File Name	Contents
AAREADME.TXT	Volume content and format information
VOLDESC.CAT	A description of the contents of this volume in
	PDS format readable by both humans and
	computers

The name of the root directory is the data set ID.

3.4.3.2 Catalog Directory

The catalog directory provides a top level understanding of the mission, spacecraft, instruments and data sets. The catalog directory contains the following files:

File Name	Contents		
CATINFO.TXT	A description of the contents of the catalog directory		
DATASET.CAT	Data set information		
INST.CAT	Instrument information		
INSTHOST.CAT	Instrument host (spacecraft) information		
MISSION.CAT	Mission information		
PERSON.CAT	PDS personnel catalog information about the instrument team responsible for generating the data products. There is one file for each instrument team providing data to this data set.		
REF.CAT	Full citations for references mentioned in any and all of the catalog files, or in any associated label files.		
SOFTWARE.CAT	Information about the software included in the EXTRAS directory		

3.4.3.3 Index Directory

The index directory contains the indices for all data products on the data set. The following files are included in the index directory:

3.4.3.3.1	Dataset	Index File
0.1.0.0.1	Balabol	

File Name	Contents
BROWSE_INDEX.LBL	PDS label for the BROWSE index file BROWSE_INDEX.TAB
BROWSE_INDEX.TAB	Index of the BROWSE directory
INDEX.LBL	PDS label for the volume index file, INDEX.TAB
INDEX.TAB	Volume index in tabular format
INDXINFO.TXT	A description of the contents of the Index Directory

3.4.3.4 Browse Directory and Browse Files

The Browse Directory contains plots (PNG files) corresponding to the data in the DATA/CALIBRATED directory. The plot range lies between 0 and 65535. The allowed carousel value range is form 0 (min value) to 21599 (max value), if 65535 (FFFF in hexadecimal) is shown, then the resolver is off and data is not available.

Document No.	
Issue/Rev	
Date	
Page	

For Drill translation the range is from 0 to 64800 (1/100 mm). The range from 0 to 63650 (frorm 0 to 63.56mm) corresponds to positive values and the range from 63651 to 64800 corresponds to negative values.

The following formula shall be used to find the correct value:

Value in decimal = (read_value (decimal) – 64800) *(-1) [1/100mm]

For filenaming convention see 3.1.4. Applicable only for Comet phase.

3.4.3.5 Software Directory

The EGSE software is used to read raw telemetry data (CDMS rolbin files). As it does not comply with PDS strong requirements on software for long term archiving, it is instead located in the EXTRAS directory. All information regarding the usage and requirements for the software are provided in documentation located in SD2_EGSE directory. The SOFTWARE.CAT file in the CATALOG directory includes additional information pointing to the software and outlining its basic usage and requirements.

3.4.3.6 Label Directory

The Label directory contains the .FMT files (structure of the TABLE objects used for the data description). This directory contains the following files:

File Name	Contents
LABINFO.TXT	A description of the contents of this directory
SD2_CALIBRATED_HK.FMT	Table object for HK data
SD2_CALIBRATED_L1.FMT	Table object for L1 data

3.4.3.7 Document Directory

This directory contains documentation to help the user to understand and use the archive data. The following files are contained in the document directory:

File Name	Contents
DOCINFO.TXT	A description of the contents of this directory
SHARK-ICD-TS-043.PDF	CDMS – SD2 Data Interface Control Document
SHARK-ICD-TS-043.LBL	PDS label for file SHARK-ICD-TS-043.PDF
SD2-SUM-TS-011.PDF	SD2 Subsystem User Manual
SD2-SUM-TS-011.LBL	PDS label for file SD2-SUM-TS-011.PDF
SHARK-AB-TS-003.PDF	Rosetta Lander SD2 Subsystem Specification
SHARK-AB-TS-003.LBL	PDS label for file SHARK-AB-TS-003.PDF
SHARK-URD-TS-067.PDF	SD2 Software User Requirement Document
SHARK-URD-TS-067.LBL	PDS label for file SHARK-URD-TS-067.PDF
RO-EST-RS-3001.PDF	Rosetta Experiment Interface Document, Pard A
RO-EST-RS-3001.LBL	PDS label for file RO-EST-RS-3001.PDF
RO-LAN-RD-3111.PDF	Rosetta Experiment Interface Document, REID-A
RO-LAN-RD-3111.LBL	PDS label for file RO-LAN-RD-3111.PDF
EAICD_SD2.PDF	This document
EAICD_SD2.LBL	PDS label for file EAICD_SD2.PDF
TIMELINE_ph.TXT	Timeline Ascii file with the PDS label attached for phase ph
TIMELINE_ph_DESC.TXT	Description of the timeline file for phase ph

Document No.	: SOP-
Issue/Rev	: 1/3
Date	:27 Ju
Page	: 26

SOP-RSSD-TPL-001 1/3 27 June 2016 26

TIMELINE_ph_obty.PNG	Timeline Image file for phase <i>ph</i> and observation type <i>obty</i>
TIMELINE_ph_obty.LBL	PDS label for image TIMELINE_ph_obty.PNG

3.4.3.8 Extras Directory

The Extras directory contains EGSE software to read and visualize raw telemetry data (CDMS rolbin files, CODMAC level 1). The contents of the EXTRAS directory are shown below:

	EXTF	RAS	
		EXTE	RINFO.TXT
	`	SD2	EGSE
			MFC42D.DLL
			MFC42D.LBL
			MFCO42D.DLL
			MFCO42D.LBL
			MSVCRTD.DLL
			MSVCRTD.LBL
			PHILAE-SD-EUM-001.LBL
			PHILAE-SD-EUM-001.PDF
			SD2-TA_SOURCE_CODE.LBL
			SD2-TA SOURCE CODE.ZIP
			SD2.EXE
		`	SD2.LBL

The EGSE Directory contains the following files :

File Name	Contents
SD2.EXE	EGSE software (PC MS Windows executable) for extracting data from the raw data product files (rolbin), calibration and visualisation.
SD2.LBL	PDS label for file SD2.EXE
MFC42D.DLL	MS Windows dynamic link library needed by SD.EXE
MFC42D.LBL	PDS label for MFC42D.DLL
MFCO42D.DLL	MS Windows dynamic link library needed by SD.EXE
MFCO42D.LBL	PDS label for MFCO42D.DLL
MSVCRTD.DLL	MS Windows dynamic link library needed by SD.EXE
MSVCRTD.LBL	PDS label for MSVCRTD.DLL
PHILAE-SD-EUM-001.PDF	User manual for the EGSE software
PHILAE-SD-EUM-001.LBL	PDS label for PHILAE-SD-EUM-001.LBL
SD2-TA_SOURCE_CODE.ZIP	EGSE software source code compressed in zip format
SD2-TA_SOURCE_CODE.LBL	PDS label for SD2-TA_SOURCE_CODE.ZIP

3.4.3.9 Data Directory

The structure and naming scheme of the data directory is described in chapter 3.1.3.

To Planetary Science Archive Interface Control Document Document No. Issue/Rev Date Page

4 Detailed Interface Specifications

4.1 Structure and Organization Overview

Each .rolbin file containing the raw data (CODMAC level 1) is archived in a data set on the basis of the mission phase relative to the production of the data. The raw data file is placed in a DATA subdirectory named RAW with the file name that follows the rules explained in this document.

Each .spr file containing calibrated (CODMAC level 3) SC data and each .cvs file containing calibrated (CODMAC level 3) HK data are archived in a DATA subdirectory named CALIBRATED with the file name that follows the rules explained in this document.

4.2 Data Sets, Definition and Content

The following table gives the definition of the name and id of the foreseen data sets:

Data Set ID	Data Set Name
RL-CAL-SD2-3-GRND-V1.0	ROSETTA-LANDER CAL SD2 3 GRND GRM-TEST V1.0
RL-CAL-SD2-3-CVP-V1.0	ROSETTA-LANDER CAL SD2 3 CVP V1.0
RL-CAL-SD2-3-CRU-V1.0	ROSETTA-LANDER CAL SD2 3 CRU V1.0
RL-CAL-SD2-3-PHC-V1.0	ROSETTA-LANDER CAL SD2 3 PHC V1.0
RL-CAL-SD2-3-PDCS-V1.0	ROSETTA-LANDER CAL SD2 3 PDCS V1.0
RL-CAL-SD2-3-FSS-V1.0	ROSETTA-LANDER CAL SD2 3 FSS V1.0

The following data sets are delivered:

- RL-CAL-SD2-3-GRND-Vx.x contains data of SD2 tests on GRM
- RL-CAL-SD2-3-CVP-Vx.x contains data of CVP phase (2004)
- RL-CAL-SD2-3-CRU-Vx.x contains data of cruise phase (2005-2014)
- RL-CAL-SD2-3-PDCS-Vx.x contains data of PDCS phase (July to October 2014

)RL-CAL-SD2-3-FSS-Vx.x contains data of FSS phase (November 2014)

- SD2_FB1_(UTC Interval): contains raw data of SD2 for the PHC, PDCS, and FSS phases
- SD2_FH3_(UTC Interval): contains calibrated HK data of SD2 for the PHC, PDCS, and FSS phases
- SD2_FS3_(UTC Interval): contains calibrated science data of SD2 for the PHC, PDCS, and FSS phases.

4.3 Data Product Design

4.3.1 Data Product Design of raw SD2 data (level 1)

Level 1 contains mixed raw housekeeping and science data packets delivered by the Rosetta Lander with detached PDS labels. In order to understand correctly the meaning of data stored in Archive refer to document AD 3.

4.3.1.1 File Characteristics Data Elements

The PDS file characteristic data element for raw (level 1) SD2 data are:

PDS VERSION ID	=	PDS3
LABEL_REVISION_NOTE	=	"V1.0″
RECORD_TYPE	=	UNDEFINED

Document No. Issue/Rev Date Page

To Planetary Science Archive Interface Control Document

```
PRODUCT_ID
                       = "SD2 GB1 040228030000 0088"
PRODUCT_CREATION_TIME = 2004-11-29T12:04:02Z
PRODUCT_TYPE = UDR
PROCESSING LEVEL_ID
                      = 1
                   = "INTERNATIONAL ROSETTA MISSION"
MISSION NAME
MISSION_PHASE NAME = "GROUND"
             = ROSETTA
MISSION ID
                   = "CALIBRATION"
TARGET NAME
TARGET_TYPE
START_TIME
                    = "CALIBRATION"
                    = 2004-02-28T02:56:16.000Z
STOP TIME
                    = 2004-02-28T04:28:04.875Z
SPACECRAFT_CLOCK START COUNT = "N/A"
SPACECRAFT_CLOCK_STOP_COUNT = "N/A"
                    = "SONC"
PRODUCER ID
PRODUCER FULL NAME = "Science Operations and Navigation Center"
PRODUCER INSTITUTION NAME = "CNES"
DATA_QUALITY_ID = "N/A"
DATA QUALITY DESC
                      = "N/A"
```

The RECORD_TYPE for raw data is UNDEFINED. The description of the file content can be found in the file pointed to by ^DESCRIPTION keyword. These data are intended to be processed with the EGSE software available in the EXTRAS directory.

4.3.1.2 Data Object Pointers Identification Data Elements

The label refers to a single data object, which is a FILE. The data object pointers (^FILE) reference rolbin (.ROL) files.

4.3.1.3 Instrument and Detector Descriptive Data Elements

```
INSTRUMENT_HOST_NAME = "ROSETTA-LANDER"
INSTRUMENT_HOST_ID = RL
INSTRUMENT_ID = SD2
INSTRUMENT_NAME = "SAMPLING, DRILLING AND DISTRIBUTION SUBSYSTEM"
INSTRUMENT_TYPE = "DRILL"
INSTRUMENT_MODE_ID = "N/A"
INSTRUMENT_MODE_DESC = "N/A"
```

4.3.1.4 Description of Instrument

The description of the instrument is reported in AD 8 and, in terms of a brief overview, in the INST.CAT catalog file.

4.3.2 Data Product Design of calibrated SD2 SC data (level 3)

Level 3 SC contains calibrated SD2 science data, drill position and carousel position with PDS detached labels.

4.3.2.1 File Characteristics Data Elements

The PDS file characteristic data elements for SD2 calibrated science data (level 3) are:

RECORD TYPE	=	FIXED LENGTH
RECORD BYTES	=	366 -
FILE RECORDS	=	40
PRODUCT TYPE	=	RDR
PROCESSING LEVEL ID	=	1

Document No.	: SOP-RS
Issue/Rev	: 1/3
Date	: 27 June 2
Page	: 29

4.3.2.2 Data Object Pointers Identification Data Elements

The calibrated SC data are organized as a table and PDS label refers to a single data object, which is a TABLE. The data object pointers (^TABLE) reference SPR files.

4.3.2.3 Data Object Definition

OBJECT	= TABLE
NAME	= "SC TABLE"
INTERCHANGE_FORMAT	= ASCĪI
ROWS	= 40
COLUMNS	= 39
ROW_BYTES	= 426
^STRUCTURE	= "SD2_CALIBRATED_L1.FMT"
END_OBJECT	= TABLE

The structure of the TABLE object is described in the file SD2_CALIBRATED_L1.FMT as follows:

/* Cc	ontents of format file "CALIBRATED_L1.FMT" */
OBJECT NAME DATA_TYPE START_BYTE BYTES DESCRIPTION	<pre>= COLUMN = "UTC_TIME" = TIME = 1 = 23 = "This column represents the UTC in PDS standard date/time format YYYY-MM-DDThh:mm:ss.sss" = COLUMN</pre>
END_OBJECT	= COLUMN
OBJECT NAME DATA_TYPE START_BYTE BYTES DESCRIPTION	<pre>= COLUMN = "LOBT_TIME" = CHARACTER = 26 = 17 = "Lander On Board Time represented as : Reset number (integer starting at 1) / seconds The time resolution is 1/65536 s"</pre>
END_OBJECT	= COLUMN
DESCRIPTION END_OBJECT	= "Position of resolver #1 (drill translation)" = COLUMN
MISSING CONS	<pre>= COLUMN = "PME2" = ASCII_INTEGER = 53 = 7 = "I7" STANT = 9999999 = "Position of resolver #2 (carousel rotation)" = COLUMN</pre>
OBJECT	= COLUMN

Document No. Issue/Rev Date Page

To Planetary Science Archive Interface Control Document

BYTES UNIT FORMAT MISSING CONS	<pre>= ASCII_REAL = 61 = 7 = MILLIMETRE = "F7.2" STANT = 9999.99 = "Volume Checker Displacement when the command [Move Volume Checker] MVCK is performed. See also AD 10 (pages 28 29) of EAICD"</pre>
NAME DATA_TYPE START_BYTE BYTES FORMAT UNIT MISSING CONS	<pre>= ASCII_INTEGER = 69 = 7 = "I7" = "ROUND PER MINUTE" STANT = 9999999 = "Drill Spead Rotation Measurement"</pre>
UNIT FORMAT MISSING_CONS	<pre>= ASCII_REAL = 77 = 7 = MILLIMETRE = "F7.2" STANT = 9999.99 = "Volume Checker Displacement #1 when the first movement UP of Volume Checker command [Perform Volume Checker Activation]</pre>
END_OBJECT	VCAC is performed. See also AD 10 (pages 29 30) of EAICD" = COLUMN
BYTES UNIT FORMAT MISSING_CONS DESCRIPTION	= ASCII_REAL = 85
END_OBJECT	= COLUMN
NAME DATA_TYPE START_BYTE BYTES UNIT FORMAT MISSING_CONS	<pre>= 7 = MILLIMETRE = "F7.2" STANT = 9999.99 = "Volume Checker Displacement #3 when the second movement UP of Volume Checker command [Perform Volume Checker Activation]</pre>
END_OBJECT	VCAC is performed. See also AD 10 (pages 29 30) of EAICD." = COLUMN
OBJECT NAME DATA_TYPE START_BYTE	<pre>= COLUMN = "CAROUSEL_MOTOR_DIRECTION" = CHARACTER = 102</pre>

Page

	To Planetary Science Archive Interface Control Document	Date Page	: 27 June 2016 : 31
BYTES DESCRIPTION	<pre>= 3 = "Part of STFG (Status Flag of Possible values are : CW (clockwise)</pre>		usel Motor Direction
END_OBJECT	CCW (counter clockwise)" = COLUMN		
NAME)N''	
DESCRIPTION END OBJECT	<pre>= "Part of STFG (Status Flag of Drill Rotation Motor Direction CW (clockwise) CCW (counter clockwise)" = COLUMN</pre>		values are
-			
NAME DATA_TYPE START_BYTE BYTES			
	<pre>= "Part of STFG (Status Flag of Drill Translation Motor Direc Possible values are : CW (clockwise) CW (counter clockwise)"</pre>		
END_OBJECT	= COLUMN		
DATA_TYPE START_BYTE BYTES	<pre>= COLUMN = "VOLUME_CHECKER_MOTOR_DIRECTIC = CHARACTER = 120 = 3 = "Part of STFG (Status Flag of Volume checker motor Directio CW (clockwise) CCW (counter clockwise)"</pre>	SD2) :	e values are :
END_OBJECT	= COLUMN		
START_BYTE BYTES	<pre>= CHARACTER = 126 = 8 = "Part of STFG (Status Flag of Drill Translation Winding Main ACTIVE</pre>	SD2) :	;Possible values are
END_OBJECT	INACTIVE" = COLUMN		
START_BYTE BYTES	= 8		
DESCRIPTION END_OBJECT	<pre>= "Part of STFG (Status Flag of Winding Redundant Activation ACTIVE INACTIVE" = COLUMN</pre>		
OBJECT NAME	<pre>= COLUMN = "DRILL_TRANSLATION_RECOVERY_TC</pre>	RQUE"	

Document No. Issue/Rev Date To Planetary Science Archive Interface Control Document Page

: SOP-RSSD-TPL-001 : 1/3 : 27 June 2016 : 32

START_BYTE BYTES	
END_OBJECT	= COLUMN
DATA_TYPE START_BYTE BYTES	<pre>= 3 = "Part of Status Flag of SD2 Unused : 9 bits (8 to 0) display in Hexadecimal form as '1FF' which is the Default Value)"</pre>
—	
NAME DATA_TYPE START_BYTE BYTES	<pre>= 3 = "Part of STPW : Drill Rotation Driver (bit 15) Possible values are : ON</pre>
END_OBJECT	OFF" = COLUMN
DATA_TYPE START_BYTE BYTES	<pre>= COLUMN = "SAMPLE_DRIVER" = CHARACTER = 171 = 3 = "Part of STPW : Sample Driver (bit 14) Possible values are ON</pre>
END_OBJECT	OFF " = COLUMN
NAME DATA_TYPE START_BYTE BYTES	<pre>= COLUMN = "CAROUSEL_ROTATION_DRIVER" = CHARACTER = 177 = 3 = "Part of STPW :Carousel Rotation Driver (bit 13) Possible values are :</pre>
END_OBJECT	OFF" = COLUMN
START_BYTE BYTES	<pre>= "DRILL_TRANSLATION_DRIVER_MAIN" = CHARACTER = 183 = 3 = "Part of STPW : Drill Translation Driver Main (bit 12) Possible values are : ON</pre>
END_OBJECT	OFF" = COLUMN
OBJECT NAME DATA_TYPE START_BYTE	<pre>= COLUMN = "DRILL_TRANSLATION_DRIVER_REDUNDANT" = CHARACTER = 189</pre>

Document No.: SOP-RSSD-TPL-001Issue/Rev: 1/3Date: 27 June 2016Page: 33 Page

	To Planetary Science Archive Interface Control Document	Date Page	: 27 June 2016 : 33
BYTES DESCRIPTION	= 3 = "Part of STPW : Drill Translat Possible values are : ON	ion Driver R	edundant (bit 11)
END_OBJECT	OFF" = COLUMN		
NAME DATA_TYPE START_BYTE BYTES	<pre>= COLUMN = "R/D_CONVERTER_DRILL_TRANSLATI = CHARACTER = 195 = 3 = "Part of STPW : R/D Converter Possible values are : ON OFF"</pre>		nslation (bit 10)
END_OBJECT			
BYTES	<pre>= COLUMN = "R/D_CONVERTER_CAROUSEL_ROTATI = CHARACTER = 201 = 3 = "Part of STPW : R/D Converter Possible values are : ON OFF"</pre>		Rotation (bit 9)
END_OBJECT			
NAME DATA_TYPE START_BYTE BYTES	<pre>= COLUMN = "VOLUME_CHECKER_DRIVER" = CHARACTER = 207 = 3 = "Part of STPW : Volume Checker Possible values are : ON OFF"</pre>	: Driver (bit	8)
END_OBJECT			
DESCRIPTION	<pre>= 213 = 2 = "Status Flag of SD2 Unused (8 Hexadecimal form as 'FF' whice</pre>		
END_OBJECT	= COLUMN		
START_BYTE BYTES	<pre>= 9 = "Memory State : Memory address hexadecimal format</pre>		
END_OBJECT	These 2 informations are sepa = COLUMN	nated by a S	Pace
START_BYTE BYTES	<pre>= COLUMN = "SD2_ON_BOARD_TIME" = CHARACTER = 230 = 9 = "32 bits SD2 internal On Board (31.25 ms resolution), represe</pre>		
	(01.20 mb 10001401011, 1001686		accimat format,

To Planetary Science Archive Interface Control Document Document No.: SOP-RSIssue/Rev: 1/3Date: 27 JunePage: 34

END_OBJECT	<pre>the 2 groups of 4 characters separated by a space" = COLUMN</pre>
DATA_TYPE START_BYTE BYTES	<pre>= COLUMN = "VOLCHKSW_UPPER" = CHARACTER = 242 = 6 = "VOLCHKSW : Upper Volume checker microswitch status (bit 14) ; 0 : CLOSED , 1: OPEN This field is a character string that takes the values OPEN or CLOSED"</pre>
END_OBJECT	
NAME DATA_TYPE START_BYTE BYTES	
END_OBJECT	
DATA_TYPE START_BYTE BYTES	<pre>= "EHSTATUS : Redundant winding recovery procedure status (bit 2) ; 0 : DISABLED , 1: ENABLED This field is a character string that takes the values</pre>
END_OBJECT	DISABLED or ENABLED" = COLUMN
NAME DATA_TYPE START_BYTE BYTES	<pre>= "EHSTATUS : Soft Emergency recovery procedure status (bit 1) ; 0 : DISABLED , 1: ENABLED This field is a character string that takes the values</pre>
END_OBJECT	DISABLED or ENABLED" = COLUMN
DATA_TYPE START_BYTE BYTES	<pre>= "HARD_EMERGENCY_RECOVERY" = CHARACTER = 282 = 8 = "EHSTATUS : Hard Emergency recovery procedure status (bit 0) ; 0 : DISABLED , 1: ENABLED This field is a character string that takes the values</pre>
END_OBJECT	DISABLED or ENABLED" = COLUMN
NAME DATA_TYPE START_BYTE BYTES	
	IN_PROGRESS (hex value 9D8),

To Planetary Science Archive Interface Control Document Document No. Issue/Rev Date Page

END_OBJECT	COMPLETED (hex value 9CE), FAILED (hex value 9E2), UNKNOWN_ <hex value=""> where <hex value=""> is a 4 bytes character string representing the unknown (none of the above) hex code of the SD2_Cmd_status This field is a character string that takes the values : IN_PROGRESS, COMPLETED, FAILED or UNKNOWN_<hex value="">" = COLUMN</hex></hex></hex>
NAME DATA_TYPE START_BYTE BYTES	= CHARACTER = 308

Control Document

To Planetary Science Archive Interface

Document No. Issue/Rev Date Page : SOP-RSSD-TPL-001 : 1/3 : 27 June 2016 : 36

0674 EC RESOLVER DATA INVALID 0684 EC CAROUSEL POS CHECK FAILURE 0693 EC_VCK_MICROSW_CHECK_FAILURE 06A3 EC_VOLUME_COUNTER_INVALID 06B3 EC_LANDG_FOS_CHECK_FAILURE 06C3 EC DRTR MAIN MOTION CHECK FAILURE 06D3 EC_DRTR_RED_MOTION_CHECK_FAILURE 0716 EC_PH_HW_ERROR 0726 EC PH POSE OUT OF RANGE 0733 EC_PH_CAR_RAMP_DOWN_TIMEOUT 0806 EC_SH_HW_ERROR 1006 EC_Q_SH_FULL_QUEUE 1016 EC_Q_EH_FULL_QUEUE 1026 EC_Q_TM_FULL_QUEUE 1036 EC_Q_ELPTIM_FULL_QUEUE 1046 EC_Q_EMSCMD_FULL_QUEUE 1056 EC_Q_CDMS_FULL_QUEUE 1066 EC_Q_TIMER_FULL_QUEUE 1076 EC_Q_EM_CIH_FULL_QUEUE 1086 EC_Q_PH_FULL_QUEUE 1096 EC_Q_SCMD_FULL_QUEUE 10A6 EC_Q_CHK_FULL_QUEUE 1106 EC Q RH FULL QUEUE 1116 EC O RERC_FULL QUEUE 2006 EC SH INTERNAL ERROR 2016 EC TM_INTERNAL_ERROR 2026 EC_SCMD_INTERNAL ERROR 2036 EC_SCMDLIB_INTERNAL_ERROR 2046 EC_BITLIB_INTERNAL_ERROR 2056 EC CIH INTERNAL ERROR 2036 EC_OPRT_INTERNAL_ERROR 2036 EC_OPRT_INTERNAL_ERROR 2036 EC_TIMER_INTERNAL_ERROR 2036 EC_MVCK_INTERNAL_ERROR 2096 EC_GBUS_IO_INTERNAL_ERROR 20A6 EC_DIRECT_INTERNAL_ERROR 20B6 EC_PH_INTERNAL_ERROR 20C6 EC CHK INTERNAL ERROR 20D6 EC_CAPO INTERNAL ERROR 20E6 EC_DRILL_INTERNAL_ERROR 20F6 EC EMERGCY INTERNAL ERROR 2106 EC_Q_SCMD_INTERNAL_ERROR 2116 EC_Q_CDMSIF_INTERNAL_ERROR 2126 EC_ZERO_INTERNAL_ERROR 2136 EC VCAC INTERNAL ERROR 2146 EC RH INTERNAL ERROR 2156 EC RH LIB INTERNAL ERROR 2166 EC BRR INTERNAL_ERROR 2176 EC MPL INTERNAL ERROR 2186 EC_BH_INTERNAL_ERROR 2196 EC_SCHEDUL_INTERNAL_ERROR 3001 EC_LDMP_REJECTED_IN_DEAD 3011 EC_LDMP_REJECTED_IN_UNDEF 3021 EC_LDMP_REJ_DURING_LDMP 3031 EC_LDMP_REJECTED_IN_DUMP 3041 EC_LDMP_CMD_CHECKSUM_FAILURE 3051 EC_LDMP_SSCMD1_SYNTAX_ERR 3061 EC_LDMP_OFFSET_PARAM_ERR 3071 EC_LDMP_LEN_PARAM_ERR 3081 EC_LDMP_OFF_LEN_PARAM_ERR 3091 EC_MP_ADLER32_CKSUM_FAILURE 30A1 EC LDMP CMD WRDC FAILURE 30B1 EC_MP_LOAD_FAILED 4001 EC_RERC_DUO_RECEIVED_WITHOUT_REQ 4001 EC_RERC_SDO_RECEIVED_WITHOUT_REQ 4021 EC_RERC_MF_RECEIVED_WITHOUT_REQ 4031 EC_RERC_RU_RECEIVED_WITHOUT_REQ

 SD2-ROSETTA
 Document No.
 : SOP-RSSD-TPL-001

 Issue/Rev
 : 1/3

 Date
 : 27 June 2016

 Page
 : 37

END_OBJECT	<pre>4041 EC_RERC_IA_RECEIVED_WITHOUT_REQ 4051 EC_RERC_IR_RECEIVED_WITHOUT_REQ 4061 EC_RERC_UR_RECEIVED_WITHOUT_REQ 4061 EC_RERC_UR_RECEIVED_WITHOUT_REQ 4071 EC_SRDY_TIMEOUT_EXPIRED 4081 EC_FLSP_TIMEOUT_EXPIRED 4091 EC_OCPL_TIMEOUT_EXPIRED 4081 EC_RDBF_TIMEOUT_EXPIRED 4081 EC_RDBF_TIMEOUT_EXPIRED 4001 EC_SRDY_MAX_NUM_RETRY_REACHED 4001 EC_SRDY_MAX_NUM_RETRY_REACHED 4061 EC_FLSP_MAX_NUM_RETRY_REACHED 4063 EC_OCPL_MAX_NUM_RETRY_REACHED 4101 EC_SCMD_MAX_NUM_RETRY_REACHED 4101 EC_SCMD_MAX_NUM_RETRY_REACHED 4113 EC_RDBF_MAX_NUM_RETRY_REACHED 4123 EC_WRBF_MAX_NUM_RETRY_REACHED"</pre>
OBJECT NAME DATA_TYPE START_BYTE BYTES DESCRIPTION	<pre>= "OPST : SD2 Current Status The possible values are (hex value first): 0000 SD2 undefined status F000 SD2 ready A000 SD2 dead 0F00 Drill in progress 0A00 Drill completed 00F0 Sampling in progress 00A0 Sampling completed 00FC Carousel rotation in progress 000A Carousel rotation completed UNKNOWN <hex value=""> This field is a character string that takes one of the following values SD2 undefined status SD2 ready SD2 dead Drill in progress Drill completed Sampling in progress Sampling in progress Sampling completed Carousel rotation in progress Carousel rotation in progress Carousel rotation completed UNKNOWN_<hex value="">, where <hex value=""> is a 4 bytes character string the unknown</hex></hex></hex></pre>
END_OBJECT	(none of the above) hex code of the SD2 status" = COLUMN
START_BYTE BYTES	<pre>= COLUMN = "STATUS_LDMP_COMMAND" = CHARACTER = 348 = 12 = "Status of the LDMP Command (Load Mission Plan) this command to SD2 to load a sequence of specific commands stored in CDMS called Mission Plan. Possible values : IN_PROGRESS (hex value AA0) COMPLETED (hex value AA6)</pre>

Document No. Issue/Rev Date Page

To Planetary Science Archive Interface Control Document

END_OBJECT	IN_PROGRESS COMPLETED FAILED UNKNOWN_ <hex value="">" = COLUMN</hex>
START_BYTE BYTES	= CHARACTER = 363
END_OBJECT	1 1 1
DATA_TYPE START_BYTE BYTES	<pre>= "FILLER_WORDS" = CHARACTER = 415 = 12 = "Filler Words (3 trailing words of record)"</pre>

4.3.2.4 Mission Specific Keywords

4.3.2.4.1 Sample Tracking Specific Keywords

These keywords have been defined to track the cometary material drilled and distributed by SD2 system.

ROSETTA: SD2 OVEN FILLING

- Type: character
- Standard values: "YES" or "NO"
- Description: filling conditions of the pictured oven as deduced from the SD2 data

ROSETTA : SD2_DRILL_DEPTH

- **Type**: real, unit mm
- Standard values: refer to SD2 data (or missing value)
- Description: depth of the drilling process as deduced from the SD2 data

ROSETTA : SD2_OVEN_NUMBER

- **Type:** integer
- Standard values: 1 to 26
- Description: number of the oven filled by the SD2 system

ROSETTA : SD2_OVEN_TYPE

- Type: character
- Standard values: "MTO" or "HTO"
- **Description:** type of the oven filled by the SD2 system (Medium Temperature Oven or High Temperature Oven)

ROSETTA : SAMPLE_TAPPING

- Type: character
- Standard values: "YES" or "NO" or "N/A"
- Description: tapping conditions of the pictured oven as deduced from the PTOLEMY or COSAC data

ROSETTA : SAMPLE_NUMBER

- Type: integer

To Planetary Science Archive Interface Control Document

Document No. Issue/Rev Date Page

- Standard values: 1, 2,...or missing value
- **Description:** number of number of sample (1 for the first sample of the mission and n+1 for the following ones)

ROSETTA : SAMPLE_VOLUME

- Type: real, mm3
- Standard values: from Volume Checker
- Description: amount of sample discharged into the oven from the Volume Checker data

ROSETTA : INSTRUMENT_ENDUSER

- Type: character
- Standard values: "CIVA-MI " or "CIVA-MV" or "COSAC " or "PTOLEMY"
- Description: instrument served by SD2 oven and analysing the sample

4.3.3 Data Product Design of calibrated SD2 HK data (level 3)

Level 3 HK contains calibrated SD2 housekeeping data, drill position and carousel position with PDS detached labels.

4.3.3.1 File Characteristics Data Elements

The PDS file characteristic data elements for SD2 calibrated science data (level 3) are:

RECORD TYPE	= FIXED LENGTH
RECORD BYTES	= 267
FILE_RECORDS	= 256
The FILE_NAME is	described in §3.1.4

4.3.3.2 Data Object Pointers Identification Data Elements

The calibrated HK data are organized as a table and PDS label refers to a single data object which is a TABLE. The data object pointers (^TABLE) reference TAB files.

4.3.3.3 Data Object Definition

Document No. Issue/Rev Date To Planetary Science Archive Interface Control Document Page

OBJECT NAME DATA_TYPE START_BYTE BYTES DESCRIPTION	<pre>= COLUMN = "LOBT_TIME" = CHARACTER = 26 = 17 = "Lander On Board Time represented as : Reset number (integer starting at 1) / seconds The time resolution is 1/65536 s" = COLUMN</pre>
END_OBJECT	The time resolution is 1/65536 s" = COLUMN
OBJECT NAME DATA_TYPE START_BYTE BYTES UNIT FORMAT MISSING_CONS DESCRIPTION END_OBJECT	<pre>= COLUMN = "CURRENT_+5V_LINE" = ASCII_REAL = 45 = 7 = MILLIAMPERE = "F7.1" STANT = 99999.9 = "Current value on +5V line" = COLUMN</pre>
MISSING CONS	<pre>= COLUMN = "CURRENT5V_LINE" = ASCII_REAL = 53 = 7 = MILLIAMPERE = "F7.1" STANT = 99999.9 = "Current value on -5V line" = COLUMN</pre>
MISSING CONS	<pre>= COLUMN = "CURRENT_+12V_LINE" = ASCII_REAL = 61 = 7 = MILLIAMPERE = "F7.1" STANT = 99999.9 = "Current value on +12V line" = COLUMN</pre>
START_BYTE BYTES UNIT FORMAT MISSING_CONS	= 7 = MILLIAMPERE
END_OBJECT	= COLUMN
DESCRIPTION	<pre>= COLUMN = "SD2 POWER" = ASCII_REAL = 77 = 9 = WATT = "F9.2" STANT = 999999.99 = "SD2 Power (watt)"</pre>
END_OBJECT	= COLUMN
OBJECT	= COLUMN

Document No. Issue/Rev Date Page : SOP-RSSD-TPL-001 : 1/3 : 27 June 2016 : 41

START_BYTE BYTES UNIT FORMAT MISSING_CONS DESCRIPTION END_OBJECT	<pre>= 6 = MILLIMETRE = "F6.2" STANT = 999.99 = "Position of resolver #1 (drill translation)" = COLUMN</pre>
FORMAT MISSING CONS	STANT = 999999 = "Position of resolver #2"
BYTES	<pre>= COLUMN = "CAROUSEL_MOTOR_DIRECTION" = CHARACTER = 102 = 3 = "Carousel Motor Direction (STFG bit 15) 0 = CW (clockwise), 1 = CCW (counter clockwise) Possible values are : CW CCW"</pre>
END_OBJECT	
BYTES	<pre>= COLUMN = "DRILL_ROTATION_MOTOR_DIRECTION" = CHARACTER = 108 = 3 = "Drill Rotation Motor Direction (STFG bit 14) 0 = CW (clockwise), 1 = CCW (counter clockwise) Possible values are : CW CCW"</pre>
END_OBJECT	
OBJECT NAME DATA_TYPE START_BYTE BYTES DESCRIPTION	<pre>= 114 = 3 = "Drill Translation Motor Direction (STFG bit 13) 0 = CW (clockwise), 1 = CCW (counter clockwise) Possible values are : CW</pre>
END_OBJECT	CCW" = COLUMN
START_BYTE BYTES	<pre>= COLUMN = "VOLUME_CHECKER_MOTOR_DIRECTION" = CHARACTER = 120 = 3 = "Part of STFG (Status Flag of SD2, bit 12): Volume checker motor Direction ; Possible values are : 0 = CW (clockwise), 1 = CCW (counter clockwise) Possible values are :</pre>

Document No. Issue/Rev Date Page

	CW CCW"
END_OBJECT	= COLUMN
NAME DATA_TYPE START_BYTE BYTES	<pre>= COLUMN = "DRILL_TRANSLATION_WINDING_MAIN" = CHARACTER = 126 = 8 = "Drill Translation Winding Main (STFG bit 11) 0 = INACTIVE, 1= ACTIVE Possible values are : ACTIVE INACTIVE"</pre>
END_OBJECT	
DATA_TYPE START_BYTE BYTES	<pre>= COLUMN = "DRILL_TRANSLATION_WINDING_REDUNDANT" = CHARACTER = 137 = 8 = "Drill Translation Winding Redundant Activation (STFG bit 10) 0 = INACTIVE, 1= ACTIVE Possible values are : ACTIVE</pre>
END_OBJECT	INACTIVE" = COLUMN
START_BYTE BYTES	<pre>= 8 = "STFG (Status Flag of SD2, bit 9): Drill Translation recovery Torque selection ; 0 = INACTIVE, 1= ACTIVE Possible values are :</pre>
END_OBJECT	INACTIVE" = COLUMN
START_BYTE BYTES	<pre>= "STFG_UNUSED" = CHARACTER = 159 = 3 = "Status Flag of SD2 Unused : 9 bits (8 to 0) display in Hexadecimal format as '1FF' which represents Default Value)"</pre>
—	= COLUMN
NAME DATA_TYPE START_BYTE BYTES	<pre>= "DRILL ROTATION_DRIVER" = CHARACTER = 165 = 3 = "Part of STPW : Drill Rotation Driver (bit 15) 0 = OFF , 1 = ON Possible values are :</pre>
END_OBJECT	= COLUMN
OBJECT NAME DATA_TYPE START_BYTE BYTES	

To Planetary Science Archive Interface Control Document Document No. Issue/Rev Date Page

	Control Document
DESCRIPTION	<pre>= "STPW : Sample Driver (bit 14) 0 = OFF , 1 = ON Possible values are : ON ON ONF"</pre>
END_OBJECT	OFF" = COLUMN
BYTES	<pre>= "CAROUSEL_ROTATION_DRIVER" = CHARACTER = 177</pre>
END_OBJECT	
BYTES	<pre>= COLUMN = "DRILL_TRANSLATION_DRIVER_MAIN" = CHARACTER = 183 = 3 = "STPW : Carousel Translation Driver Main (bit 12) 0 = OFF , 1 = ON Possible values are : ON OFF"</pre>
END_OBJECT	
DATA_TYPE START_BYTE BYTES	<pre>= 189 = 3 = "STPW : Carousel Translation Driver Redundant (bit 11) 0 = OFF , 1 = ON Possible values are : ON</pre>
END_OBJECT	OFF" = COLUMN
START_BYTE BYTES	<pre>= "R/D_CONVERTER_DRILL_TRANSLATION" = CHARACTER</pre>
END_OBJECT	
NAME DATA_TYPE START_BYTE BYTES	<pre>= COLUMN = "R/D_CONVERTER_CAROUSEL_ROTATION" = CHARACTER = 201 = 3 = "STPW : R/D Converter of Carousel Rotation (bit 9) 0 = OFF , 1 = ON Possible values are :</pre>
END_OBJECT	

Document No. Issue/Rev Date Page

START_BYTE BYTES	<pre>= "VOLUME_CHECKER_DRIVER" = CHARACTER = 207</pre>
END_OBJECT	
NAME DATA_TYPE START_BYTE BYTES	= "Status Flag of SD2 Unused 8 bits (0 to 7)display in
END_OBJECT	<pre>Hexadecimal form as 'FF' which represents Default Value)" = COLUMN</pre>
DATA_TYPE START_BYTE BYTES	<pre>= COLUMN = "SD2_SH_CMD_STATUS" = CHARACTER = 218 = 12 = "Status of Speed Control Command IN_PROGRESS (0x9D8), COMPLETED (0x9CE), FAILED (0x9E2) UNKNOWN_<hex value="">, where <hex value=""> is a 4 bytes character string representing the unknown (none of the 3 above) hex code of the status The possibles values are : IN_PROGRESS COMPLETED FAILED UNKNOWN <hex value="">"</hex></hex></hex></pre>
END_OBJECT	
DATA_TYPE START_BYTE BYTES	<pre>= COLUMN = "SD2_PH_CMD_STATUS" = CHARACTER = 233 = 12 = "Status of Position Control Command IN_PROGRESS (0x9D8), COMPLETED (0x9CE), FAILED (0x9E2) UNKNOWN_<hex value="">, where <hex value=""> is a 4 bytes character string representing the unknown (none of the 3 above) hex code of the status The possibles values are : IN_PROGRESS COMPLETED FAILED UNKNOWN <hex value="">"</hex></hex></hex></pre>
END_OBJECT	
START_BYTE BYTES	<pre>= COLUMN = "SD2_CMD_STATUS" = CHARACTER = 248 = 12 = "Status of Current Command IN_PROGRESS (0x9D8), COMPLETED (0x9CE), FAILED (0x9E2) UNKNOWN_<hex value="">, where <hex value=""> is a 4 bytes character string representing the unknown (none of the 3 above) hex code of the status</hex></hex></pre>

Page

Document No.: SOP-RSSD-TPL-001Issue/Rev: 1/3Date: 27 June 2016Page: 45

	The possibles values are : IN_PROGRESS COMPLETED FAILED UNKNOWN <hex value="">"</hex>		
END_OBJECT	= COLUMN		
DATA_TYPE START_BYTE BYTES	= 263		
END_OBJECT			
BYTES	= CHARACTER = 270		
END_OBJECT	= COLUMN		
START_BYTE BYTES	<pre>= COLUMN = "ERFG" = CHARACTER = 303 = 4 = "Error Flag of SD2 controlled devices This field takes 4 bytes characters hex values from the following list (first the hex value):</pre>		

SD2-ROSETTA To Planetary Science Archive Interface

Control Document

Document No. Issue/Rev Date Page : SOP-RSSD-TPL-001 : 1/3 : 27 June 2016 : 46

00B6 EC SPC CMD REJECTED IN POWER ON 00C6 EC ABRT CMD CHECKSUM FAILURE 00D6 EC_EMST_CMD_CHECKSUM_FAILURE 00E6 EC_ABRT_CMD_SYNTAX_FAILURE 00F6 EC_EMST_CMD_SYNTAX_FAILURE 0106 EC_ABRT_CMD_WRDC_FAILURE 0206 EC_EMST_CMD_WRDC_FAILURE 0200 EC_RERC_DESTINATION_UNIT_OFF 0215 EC_RERC_SCIENCE_DATA_OUT 0215 EC_RERC_SCIENCE_DATA_OUT 0225 EC_RERC_MEMORY_FULL 0235 EC_RERC_REQ_UNDUE 0245 EC_RERC_ILLEGAL_ADDRESS 0255 EC_RERC_ILLEGAL_REQ_CODE 0261 EC_RERC_REASON_UNKNOWN 0270 EC_RASV_RECEIVED 0280 EC_RAXT_RECEIVED 0290 EC_RSCS_RECEIVED 02A0 EC_RBUS_RECEIVED 02B1 EC_TRG_RECEIVED 02D5 EC USR CMD ILLEGAL AC 02E5 EC_USR_DATA_ILLEGAL_AC 02F5 EC_STBY_RECEIVED 0305 EC RCMS RECEIVED WITH NO MP LOAD 0311 EC_RMOD_NORMAL_MODE 0321 EC_RMOD_NO NORMAL MODE 0331 EC_RSST_INIT_RECOVERY_PROC 0340 EC_RSST_NO_RECOVERY_PROC 0403 EC_CHK_DRILLROT_SPEED_FAILURE 0412 EC_CHK_DRILLTRA_SPEED_FAILURE 0423 EC CHK CAROUSEL SPEED FAILURE 0506 EC_BH_SWITCHONOFF_ERROR 0516 EC_BH_SETSTD_ERROR 0526 EC_BH_SWITCHTUBE_ERROR 0603 EC_DEADLINE_MISSED 0613 EC_COSAC_STATUS_ENGAGED 0623 EC_COSAC_STATUS_UNDEFINED 0633 EC PTOLEMY STATUS ENGAGED 0643 EC_PTOLEMY_STATUS_UNDEFINED 0656 EC_SARE CONFIGURATION CHECK FAILURE 0664 EC DRILL POS CHECK FAILURE 0674 EC_RESOLVER_DATA_INVALID 0684 EC_CAROUSEL_POS_CHECK_FAILURE 0693 EC_VCK_MICROSW_CHECK_FAILURE 06A3 EC_VOLUME_COUNTER_INVALID 06B3 EC_LANDG POS_CHECK_FAILURE 06C3 EC_DRTR_MAIN_MOTION_CHECK_FAILURE 06D3 EC DRTR RED MOTION CHECK FAILURE 0716 EC_PH_HW_ERROR 0726 EC_PH_POSE_OUT_OF_RANGE 0733 EC_PH_CAR_RAMP_DOWN_TIMEOUT 0806 EC SH HW ERROR 1006 EC_Q_SH_FULL_QUEUE 1016 EC_Q_EH_FULL_QUEUE 1026 EC_Q_TM_FULL_QUEUE 1036 EC_Q_ELPTIM_FULL_QUEUE 1046 EC_Q_EMSCMD_FULL_QUEUE 1056 EC_Q_CDMS_FULL_QUEUE 1056 EC_Q_CDMS_FULL_QUEUE 1066 EC_Q_TIMER_FULL_QUEUE 1076 EC_Q_EM_CIH_FULL_QUEUE 1086 EC_Q_PH_FULL_QUEUE 1096 EC_Q_SCMD_FULL_QUEUE 1066 EC_Q_CHK_FULL_QUEUE 1106 EC_Q_RH_FULL_QUEUE 1116 EC_Q_RERC_FULL_QUEUE 2006 EC_SH_INTERNAL_ERROR 2016 EC_TM_INTERNAL_ERROR 2016 EC_TM_INTERNAL_ERROR

To Planetary Science Archive Interface Control Document

Document No.: SOP-RSSD-TPL-001Issue/Rev: 1/3Date: 27 June 2016Page: 47

		EC_SCMD_INTERNAL_ERROR
		EC_SCMDLIB_INTERNAL_ERROR
		EC_BITLIB_INTERNAL_ERROR
	2056	EC_CIH_INTERNAL_ERROR EC_OPRT_INTERNAL_ERROR
		EC_OFRI_INTERNAL_ERROR
		EC_NVCK_INTERNAL_ERROR
		EC GBUS IO INTERNAL ERROR
		EC DIRECT INTERNAL ERROR
	20B6	EC PH INTERNAL ERROR
		EC_CHK_INTERNAL_ERROR
		EC_CAPO_INTERNAL_ERROR
		EC_DRILL_INTERNAL_ERROR
		EC_EMERGCY_INTERNAL_ERROR
		EC_Q_SCMD_INTERNAL_ERROR
		EC_Q_CDMSIF_INTERNAL_ERROR EC_ZERO_INTERNAL_ERROR
		EC_ZERO_INIERNAL_ERROR EC_VCAC_INTERNAL_ERROR
		EC_VCAC_INTERNAL_ERROR
	2156	EC RH LIB INTERNAL ERROR
		EC BRR INTERNAL ERROR
		EC_MPL_INTERNAL_ERROR
		ec_bh_Internal_Error
	2196	EC_SCHEDUL_INTERNAL_ERROR
		EC_LDMP_REJECTED_IN_DEAD
		EC_LDMP_REJECTED_IN_UNDEF
		EC_LDMP_REJ_DURING_LDMP
		EC_LDMP_REJECTED_IN_DUMP
		EC_LDMP_CMD_CHECKSUM_FAILURE EC_LDMP_SSCMD1_SYNTAX_ERR
		EC_LDMP_SSCMD1_SINIAX_ERR EC_LDMP_OFFSET_PARAM_ERR
		EC LDMP LEN PARAM ERR
		EC LDMP OFF LEN PARAM ERR
	3091	EC_MP_ADLER32_CKSUM_FAILURE
		EC_LDMP_CMD_WRDC_FAILURE
		EC_MP_LOAD_FAILED
		EC_RERC_DUO_RECEIVED_WITHOUT_REQ
		EC_RERC_SDO_RECEIVED_WITHOUT_REQ
		EC_RERC_MF_RECEIVED_WITHOUT_REQ EC_RERC_RU_RECEIVED_WITHOUT_REQ
		EC RERC IA RECEIVED WITHOUT REQ
		EC RERC IR RECEIVED WITHOUT REQ
		EC RERC UR RECEIVED WITHOUT REQ
		EC SRDY TIMEOUT EXPIRED
	4081	EC_FLSP_TIMEOUT_EXPIRED
	4091	EC_OCPL_TIMEOUT_EXPIRED
		EC_SCMD_TIMEOUT_EXPIRED
		EC_RDBF_TIMEOUT_EXPIRED
		EC_WRBF_TIMEOUT_EXPIRED
		EC_SRDY_MAX_NUM_RETRY_REACHED EC_FLSP_MAX_NUM_RETRY_REACHED
		EC_FLSP_MAX_NOM_REIRI_REACHED EC_OCPL_MAX_NUM_RETRY_REACHED
		EC SCMD MAX NUM RETRY REACHED
		EC RDBF MAX NUM RETRY REACHED
		EC WRBF MAX NUM RETRY REACHED"
END_OBJECT		
	= COLUMN	
NAME	= "DUMMY"	PD
DATA_TYPE START BYTE	- СПАКАСТ = 310	Γ.Λ.
	= 310 = 4	
		; Always equal to FFFF"
END OBJECT		. 21
_		

SD2-ROSETTA To Planetary Science Archive Interface

Control Document

Issue/Rev Date Page

Appendix A : Available Software to read PDS files 5

The level 3 housekeeping and science PDS files can be read with the PDS table verifier tool "tbtool" and readpds (Small Bodies Node tool).

6 Appendix B : Example of PDS label for SD2 HK level 3 data product

```
PDS VERSION ID
                                     = PDS3
LABEL REVISION NOTE = "2010-12-23, SONC, version 1.0"
/* PVV version 3.6 */
/*
                Calibrated Housekeeping Data (Level 3) */
/* FILE CHARACTERISTIC DATA ELEMENTS */
                          = FIXED LENGTH
RECORD TYPE
RECORD BYTES
                         = 316
FILE RECORDS
                          = 16
/* DATA OBJECT POINTERS */
^TABLE
                       = ("SD2 FH3 040314081924 0008.TAB",1)
/* IDENTIFICATION AND DESCRIPTIVE DATA ELEMENTS */
                           = "RL-CAL-SD2-3-CVP-V1.0"
DATA SET ID
DATA SET NAME = "ROSETTA-LANDER CAL SD2 3 CVP V1.0"
PRODUCT_ID = "SD2_FH3_040314081924_0008"
PRODUCT_ID = "SD2_FH3_U4U314U019
PRODUCT_CREATION_TIME = 2010-11-25T09:07:50
- "INTERNATIONAL ROS
MISSION_NAME = "INTERNATIONAL ROSETTA MISSION"
MISSION_PHASE_NAME = "COMMISSIONING"
MISSION_ID
                             = ROSETTA
INSTRUMENT_HOST_NAME = "ROSETTA-LANDER"
INSTRUMENT_HOST_ID = RL
INSTRUMENT HOST ID = RL
OBSERVATION TYPE = "COMMISSIONING"
PRODUCT TYPE
                         = RDR
PROCESSING_LEVEL_ID = "3"
START TIME
                           = 2004-03-14T08:19:24.492
STOP TIME
                           = 2004-03-14T08:27:32.117
SPACECRAFT_CLOCK_START_COUNT = " 1/37873151.04096"
SPACECRAFT_CLOCK_STOP_COUNT = " 1/37873638.45056"
PRODUCER_ID = "SONC"

PRODUCER_FULL_NAME = "SCIENCE OPERATIONS AND NAVIGATION CENTER"
PRODUCER_INSTITUTION NAME = "CNES"
INSTRUMENT_ID = SD2
INSTRUMENT_NAME = "SAMPLING, DRILLING AND DISTRIBUTION SUBSYSTEM"
INSTRUMENT_TYPE = "DRILL"
INSTRUMENT_MODE_ID = "N/A"
INSTRUMENT_MODE_DESC = "N/A"
                     = "CALIBRATION"
TARGET NAME
TARGET TYPE
                           = "CALIBRATION"
DATA QUALITY ID
                           = "-1"
                            = "-1 : NOT QUALIFIED"
DATA QUALITY DESC
/* GEOMETRY PARAMETERS */
/* SPACECRAFT LOCATION: Position <km> */
SC_SUN_POSITION_VECTOR = ( 144196046.9, -13267839.7,
                                                                     -6008372.7)
/* TARGET PARAMETERS: Position <km>, Velocity <km/s> */
SC_TARGET_POSITION_VECTOR = ("N/A", "N/A", "N/A")
```


SD2-ROSETTA To Planetary Science Archive Interface

Control Document

Issue/Rev Date Page

Document No. : SOP-RSSD-TPL-001 : 1/3 : 27 June 2016 : 49

SC_TARGET_VELOCITY_VECTOR = ("N/A", "N/A", "N/A") /* SPACECRAFT POSITION WITH RESPECT TO CENTRAL BODY */ SPACECRAFT ALTITUDE = "N/A" SUB SPACECRAFT LATITUDE = "N/A" SUB SPACECRAFT LONGITUDE = "N/A" NOTE = "The values of the keywords SC SUN POSITION VECTOR, SC_TARGET_POSITION_VECTOR and SC_TARGET_VELOCITY_VECTOR are related to the EMEJ2000 reference frame. The values of SUB SPACECRAFT LATITUDE and SUB SPACECRAFT LONGITUDE are northern latitude and eastern longitude in the standard planetocentric IAU <TARGET NAME> frame. All values are computed for the time = START TIME. Distances are given in <km> velocities in <km/s>, Angles in <deg>" /* SD2 PARAMETERS */ ROSETTA:SD2 OVEN FILLING = "N/A" ROSETTA:SD2_OVEN_TILLING = N/A ROSETTA:SD2_DRILL_DEPTH = 999.99 ROSETTA:SD2_OVEN_NUMBER = 99 ROSETTA:SD2_OVEN_TYPE = "N/A" = 99 ROSETTA:SAMPLE NUMBER ROSETTA:SAMPLE_TAPPING = "N/A" ROSETTA:SAMPLE_VOLUME = 999.99 ROSETTA: INSTRUMENT ENDUSER = "N/A" /* DATA OBJECT DEFINITION */ OBJECT = TABLE NAME = "HK_TABLE" INTERCHANGE FORMAT = ASCII = 16 ROWS COLUMNS = 33 = 316 = "SD2_CALIBRATED_HK.FMT" = TABLE ROW_BYTES ^STRUCTURE END OBJECT

END

SD2-ROSETTA To Planetary Science Archive Interface Control Document Document No. Issue/Rev Date Page

7 Appendix C : Example of Directory Listing of Data Set RL-CAL-SD2-3-CVP-V1.0

RL-C-SD2-3-FSS-V1.0 |-- .PDSVOLUME.XML |-- AAREADME.TXT |-- CATALOG |-- CATINFO.TXT -- DATASET.CAT |-- INST.CAT |-- INSTHOST.CAT |-- MISSION.CAT -- PERSON.CAT |-- REF.CAT -- SOFTWARE.CAT I-- DATA |-- CALIBRATED |-- SD2_FH3_141114104329_0174.LBL |-- SD2_FH3_141114104329_0174.TAB |-- SD2_FH3_141114221934_0014.LBL |-- SD2 FH3 141114221934 0014.TAB |-- SD2_FS3_141114104357_0170.LBL |-- SD2_FS3_141114104357_0170.TAB |-- SD2_FS3_141114222001_0003.LBL -- SD2 FS3 141114222001 0003.TAB -- RAW |-- SD2 FB1 141114104713 0170.DAT |-- SD2_FB1_141114104713_0170.LBL |-- SD2_FB1_141114222318_0010.DAT `-- SD2_FB1_141114222318_0010.LBL -- DOCUMENT |-- DOCINFO.TXT -- EAICD SD2.LBL |-- EAICD SD2.PDF |-- RL-SD2-LOGBOOK.LBL |-- RL-SD2-LOGBOOK.TXT |-- RO-EST-RS-3001.LBL |-- RO-EST-RS-3001.PDF |-- RO-LAN-RD-3111.LBL |-- RO-LAN-RD-3111.PDF |-- SD2-SUM-TS-011.LBL |-- SD2-SUM-TS-011.PDF |-- SHARK-AB-TS-003.LBL |-- SHARK-AB-TS-003.PDF |-- SHARK-ICD-TS-043.LBL |-- SHARK-ICD-TS-043.PDF |-- SHARK-URD-TS-067.LBL |-- SHARK-URD-TS-067.PDF |-- TIMELINE_SDL_RBD_FSS.LBL -- TIMELINE SDL RBD FSS.TXT -- TIMELINE SDL RBD FSS 1.PNG |-- TIMELINE_SDL_RBD_FSS_2.PNG -- TIMELINE_SDL_RBD_FSS_DESC.TXT -- ZIPINFO.TXT -- EXTRAS |-- EXTRINFO.TXT -- SD2 EGSE |-- MFC42D.DLL |-- MFC42D.LBL |-- MFCO42D.DLL -- MFCO42D.LBL |-- MSVCRTD.DLL |-- MSVCRTD.LBL

Control Document

Issue/Rev Date To Planetary Science Archive Interface Page

Document No. : SOP-RSSD-TPL-001 : 1/3 : 27 June 2016 : 51

|-- PHILAE-SD-EUM-001.LBL |-- PHILAE-SD-EUM-001.PDF |-- SD2-TA_SOURCE_CODE.LBL |-- SD2-TA_SOURCE_CODE.ZIP |-- SD2.EXE `-- SD2.LBL -- INDEX |-- INDEX.LBL -- INDEX.TAB |-- LABEL |-- LABINFO.TXT | |-- SD2_CALIBRATED_HK.FMT | `-- SD2_CALIBRATED_L1.FMT `-- VOLDESC.CAT