# ROSETTA RPC-LAP OPERATIONS REPORT LUTETIA FLYBY

## Operations on July 7 - 13, 2010

IRFU-ROS-OPR-LUT Version 1.4 28 Aug 2012



Anders Eriksson Swedish Institute of Space Physics, Uppsala



Swedish Institute of Space Physics Uppsala

## Contents

| Со | ntents | 5                                                          | 2  |
|----|--------|------------------------------------------------------------|----|
| Do | cume   | nt history                                                 | 2  |
| 1  | Intro  | duction                                                    | 3  |
| 2  | Orbi   | t and pointing                                             | 3  |
| 3  | Oper   | rations                                                    | 7  |
|    | 3.1    | Overview                                                   | 7  |
|    | 3.2    | Operational details                                        | 8  |
| 4  | Data   | 1                                                          | 19 |
|    | 4.1    | Blocks A and H: bias voltage sweeps                        | 19 |
|    | 4.2    | Blocks B and I: Offset determination                       | 20 |
|    | 4.3    | Blocks C and D: Science operations before closest approach | 20 |
|    | 4.4    | Block D: Closest approach                                  | 22 |
|    | 4.5    | Block E: BM post-asteroid science operations in LDL mode   | 23 |
|    | 4.6    | Block F: NM post-asteroid science operations               | 24 |
|    | 4.7    | Block G: bias current stepping                             | 24 |
|    | 4.8    | Block J: LDL quiet mode                                    | 25 |
| 5  | Cone   | clusion                                                    | 25 |

## **Document history**

| Revision | Date       | Comment                                                    |
|----------|------------|------------------------------------------------------------|
| 0.1      | 2010-07-09 | Initiated                                                  |
| 1.0      | 2010-09-06 | First release, post-flyby data remains to analyze.         |
| 1.1      | 2011-12-02 | Updated with post-flyby data.                              |
| 1.2      | 2012-04-25 | Corrections after archive review: Missing figure inserted, |
|          |            | figure numbers corrected, minor editorial changes.         |
| 1.3      | 2012-05-03 | Sections 4.1 and 5 revised with discussion of remaining    |
|          |            | offset on probe 2.                                         |
| 1.4      | 2012-08-28 | Corrections after review by ESA/PSA.                       |

## 1 Introduction

This is the report from the operations of RPC-LAP during the Rosetta flyby of asteroid 21 Lutetia, with closest approach close to 15:54 UT in July 10.

Goals of LAP operations during this flyby:

- Observe the solar wind and look for any signatures that may relate to asteroid-solar wind interaction.
- Determine photoemission at this unprecedentedly large heliocentric distance
- Compare current-voltage characteristics obtained by voltage and current bias sweeps.

All operations were succesful.

## 2 Orbit and pointing

Figure 1 shows the position of Rosetta in the planetary system at the time of the operation. The heliocentric distance at the time of Rosetta closest approach to the asteroid was 2.72 AU. The spacecraft attitude profile is shown in Figure 2.



**Figure 1.** Rosetta position in the planetary system at the Lutetia flyby. Produced by orbit tool at http://rosetta.esa.int.



Figure 2. Pointing profile for the Lutetia flyby.

*Top:* Angles to the sun for the s/c axes.

*Centre:* The solar aspect angle is shown in black. The red curve is the solar elevation above the xz plane. The shaded regions indicate the illumination of the LAP probes when the black lines enter these regions. The upper shaded region indicates when LAP probe 1 is in eclipse behind the solar panels. The lower two shaded areas show when LAP probe 2 is eclipsed by the spacecraft body (lower, darker shading) or possibly eclipsed by the high gain antenna (upper, lighter shading).

*Bottom:* Probe 1 (black) and 2 (red) illumination. 0 = eclipse by solar panels (P1) or s/c (P2); 0.4 = possible eclipse by HGA (P2 only), 1 = sunlight.

From the attitude profile illustrated in Figure 2, an illumination prediction as shown in Table 1 can be derived for the LAP probes.

Figure 3 compares the actual Lutetia flyby to the rehearsal in March 14-15, 2010, with simulated closest approach at midnight. From CA-4 hrs to CA+1 hr, the pointing profiles are very similar.

```
P1 initially behind s/c
P2 initially in sunlight
P1 in sunlight from 2010-07-07 17:59:00
                                         0 01:59
P2 behind HGA from 2010-07-07 18:19:00
                                         0 02:19
P2 behind s/c from
                    2010-07-07 18:49:00
                                         0 02:49
                   2010-07-07 21:11:00
P2 behind HGA from
                                         0 05:11
P2 in sunlight from 2010-07-07 21:43:00
                                        0 05:43
P1 behind s/c from 2010-07-07 22:05:00
                                         0 06:05
P1 in sunlight from 2010-07-08 05:54:00
                                        0 13:54
P2 behind HGA from 2010-07-08 06:16:00
                                        0 14:16
P2 behind s/c from
                    2010-07-08 06:49:00
                                        0 14:49
P2 behind HGA from 2010-07-08 12:49:00
                                        0 20:49
P2 in sunlight from 2010-07-08 13:19:00
                                        0 21:19
P1 behind s/c from 2010-07-08 13:39:00
                                        0 21:39
P1 in sunlight from 2010-07-10 11:45:00
                                        2 19:45
                                        2 23:24
P1 behind s/c from 2010-07-10 15:24:00
P1 in sunlight from 2010-07-10 15:42:00
                                        2 23:42
P2 behind HGA from 2010-07-10 15:44:00
                                        2 23:44
P2 behind s/c from
                    2010-07-10 15:46:00
                                         2 23:46
P2 in sunlight from 2010-07-10 16:15:00
                                         3 00:15
P2 behind s/c from
                    2010-07-10 16:16:00
                                         3 00:16
P2 behind HGA from
                    2010-07-10 18:24:00
                                         3 02:24
P2 in sunlight from 2010-07-11 11:06:00
                                         3 19:06
P1 behind s/c from
                    2010-07-11 11:39:00
                                         3 19:39
P1 in sunlight from 2010-07-11 21:40:00
                                        4 05:40
P2 behind HGA from
                    2010-07-11 22:05:00
                                        4 06:05
P2 behind s/c from 2010-07-12 04:43:00 4 12:43
```

**Table 1.** Predicted LAP illumination conditions for the Lutetia flyby. P1 shadowing is actually caused by the solar panels, not by the s/c body. The two rightmost columns give time relative to RPC turn-on at the start of operations in days and HH:MM.



**Figure 3.** Pointing profile for the Lutetia flyby (top) and rehearsal (bottom). From CA-4 hrs to CA+1 hr, the pointing profiles are very similar. Date labels are wrong: the top is for July 10, 2010, the lower for March 14-15, 2010. The solar aspect angle is shown in black. The red curve is the solar elevation above the xz plane. The shaded regions indicate the illumination of the LAP probes when the black lines enter these regions. The upper shaded region indicates when LAP probe 1 is in eclipse behind the solar panels. The lower two shaded areas show when LAP probe 2 is eclipsed by the spacecraft body (lower, darker shading) or possibly eclipsed by the high gain antenna (upper, lighter shading).

## **3** Operations

#### 3.1 Overview

The LAP operations can be divided into the following blocks:

- A. Turn on LAP in normal TM mode (NM) 3 days before c/a (100707 16:10-23:10), running bias sweeps on both probes (NM NN). Keep this mode for 7 hrs, as there are two large attitude sweeps in this time frame, to gather data on pointing effects this far from the sun.
- B. Internal offset determination for 20 minutes (100707 23:10-23:30, also in block I).
- C. Normal TM mode (NM) operations in EE mode (NM EE), for 2 1/2 days when approaching the asteroid. Standard science operation for monitoring solar wind, with bias adjustments as appropriate from probe illumination conditions predicted from the attitude profile (100707 23:30 - 100710 12:54, also in block F)
- D. Burst TM mode (BM) operations in EE mode (BM EE), from CA-3 hrs to CA+1 hr (100710 12:54 16:50). Standard science operation for monitoring solar wind and well suited for searching for any signatures of asteroid-solar wind interaction, with bias adjustments as appropriate from probe illumination conditions predicted from the attitude profile.
- E. BM operations in E- mode, with probe 2 handed over to MIP for LDL operations, from CA+1 hr to CA+3hrs (100710 16:50 18:54). Standard science operation for monitoring solar wind as long as P1 is illuminated.
- F. Normal TM mode (NM) operations in EE mode (NM EE) when RPC goes back to NM. Standard science operation for monitoring solar wind, with bias adjustments as appropriate from probe illumination conditions predicted from the attitude profile (100710 18:54 100712 05:21, also in block C).
- G. Bias current stepping on P1 to provide a current-voltage curve from this mode, which we have never done before in space. A number of manually commanded bias settings at 60 second intervals give an artificial probe sweep. Signatures of these steps in P2 data are also of interest. (100712 05:21 05:40).
- H. Bias voltage sweeps on both probes (NM NN), for comparison to step G data. 100712 05:40 06:30).
- I. Internal offset determination for 20 minutes (100712 06:30 06:55, also in block B).
- J. Operations in "quiet LDL mode" (NM N-), meaning that LAP hands over probe 2 to MIP for LDL operations and puts probe 2 into bias voltage mode (N-). This is not as scientifically useful for LAP, but gives MIP optimal data opportunity, for 33 hrs until end of operations (100712 06:55 - 100713 16:00)

## 3.2 Operational details

Table 2 below summarizes the RPC operations planning, including other RPC instruments. The timeline for the other instruments does not necessarily reflect the actual outcome: e.g., ICA was turned off during the operation. For LAP, all operations went smoothly, and all data are nominal.

The table is copied from the RPC operations planning wiki pages, with the columns at extreme left and right added to identify the operational block in Section 3.1 and to comment on the outcome of the operations, respectively. The reference time is the LAP startup time, 2010-07-07 16:00:00 UT. Time in UT has been added to the table for most LAP-relevant steps (2nd line of a time entry, in format DD\_HH:MM:SS or , if SS=00, DD\_HH:MM, where DD is the date in July 2010).

The time given for the bias settings are for the first command in the bias setting command sequence. The actual command for setting the bias current is sent 3 seconds later.

| Block | Step | Time                         | Status | Sequence                                                                                                                                               | Comment                                                                                                                                                                                                                                                            | Post-operational notes |
|-------|------|------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|       | 010  |                              |        |                                                                                                                                                        | Status before this step: RPC<br>ON; all instruments OFF<br>Sequence execution time:<br>RP_START<br>(COUNT=090100) = (07-<br>Jul-2010) 188_16:00:00                                                                                                                 |                        |
|       | 030  | +000_00:10:00                | on     | ARPS811A # MAG Mode<br>Change<br><br>VSK01264 = SID2 [ENG]<br># ModeMAG                                                                                | MAG ON in normal mode.                                                                                                                                                                                                                                             |                        |
| Α     | 040  | +000_00:10:01<br>07_16:10:01 | on     | ARPS809A # LAP Mode<br>Change<br><br>VSK01262 = SID2 [ENG]<br># ModeLAP<br>VSK01267 = 0x50 #<br>LAParam<br>VSK01269 = 0x0005 # LAP<br>EEPROM Boot Bank | LAP ON in normal mode,<br>running macro 600 (sweep).<br>We keep this mode for the<br>first 7 hrs as there are two<br>large attitude sweeps in this<br>period. This will give good<br>attitude characteristics at<br>this large heliocentric<br>distance (2.72 AU). |                        |
|       | 050  | +000_00:10:02                | on     | ARPS810A # MIP Mode<br>Control<br><br>VSK01263 = SID2 [ENG]<br># ModeMIP<br>VSK01268 = 0xff #<br>MIPParam                                              | MIP ON in normal mode.                                                                                                                                                                                                                                             |                        |
| В     | 060  | +000_07:10:00<br>07_23:10    | on     | ARPS809A # LAP Mode<br>Change<br><br>VSK01262 = SID2 [ENG]<br># ModeLAP<br>VSK01267 = 0x04 #<br>LAParam<br>VSK01269 = 0x0005 # LAP<br>EEPROM Boot Bank | LAP offset determination<br>(macro 0x104)<br>The attitude stabilizes at<br>23:00 (000_07:00), so this is<br>a good point to stop sweep<br>operations.                                                                                                              |                        |
| С     | 070  | +000_07:30:00<br>07_23:30    | on     | ARPS809A # LAP Mode<br>Change<br>                                                                                                                      | LAP to NM EE mode<br>(macro 0x503)<br>Ibias -8/+3 nA                                                                                                                                                                                                               |                        |

|     |                           |    | VSK01262 = SID2 [ENG] # ModeLAP VSK01267 = $0x43$ #<br>LAParam<br>VSK01269 = $0x0005$ # LAP<br>EEPROM Boot Bank                                                              | P1 is in eclipse and P2<br>sunlit, so we expect P1<br>saturation until next bias<br>setting.                                                                                                                                                                                   |  |
|-----|---------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 072 | +000_07:35:00<br>07_23:35 | on | ARPF390A # RPC LAP Set<br>Bias<br><br>VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x8E7D #<br>E_Fix_Bias_param_2 | LAP bias P1 +1 nA, P2 -5<br>nA (P1 eclipse, P2 sunlit)<br>This sets nominal bias for<br>this illumination.                                                                                                                                                                     |  |
| 090 |                           |    |                                                                                                                                                                              | +000_13:00:00 = (08-Jul-<br>2010) 189_05:00:00 -> Start<br>slew to RPC pointing- 70<br>deg < SAA < 90 deg<br>+000_15:00:00 = (08-Jul-<br>2010) 189_07:00:00 -> End<br>slew<br>+000_20:40:00 = (08-Jul-<br>2010) 189_12:40:00 -> End<br>of RPC pointing; slew to<br>SAA 169 deg |  |
| 092 | 000_13:55:00<br>08_05:55  | on | ARPF390A # RPC LAP Set<br>Bias<br><br>VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x8E8E #<br>E_Fix_Bias_param_2 | LAP bias P1 and P2 -5 nA<br>Both probes sunlit from<br>05:54                                                                                                                                                                                                                   |  |
| 094 | 000_14:16:00<br>08_06:16  | on | ARPF390A # RPC LAP Set<br>Bias<br><br>VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x7D8E #<br>E_Fix_Bias_param_2 | LAP bias P1 -5 nA, P2 +1<br>nA<br>P2 into HGA eclipse 06:16,<br>s/c eclipse 06:49.                                                                                                                                                                                             |  |
| 096 | 000_21:19:00<br>08_ 13:19 | on | ARPF390A # RPC LAP Set<br>Bias<br><br>VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x8E8E #<br>E_Fix_Bias_param_2 | LAP bias P1 and P2 -5 nA<br>P2 out of s/c eclipse 12:49,<br>out of HGA eclipse 13:19.                                                                                                                                                                                          |  |
| 098 | 000_21:38:00<br>08_13:38  | on | ARPF390A # RPC LAP Set<br>Bias<br><br>VRPD3046 = 0x0000 #<br>Denisty Fix Bias param 2                                                                                        | LAP bias P1 +1 nA and P2<br>-5 nA<br>P1 into eclipse at 13:39.                                                                                                                                                                                                                 |  |
|     |                           |    | VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x8E7D #                                                                                                                |                                                                                                                                                                                                                                                                                |  |

|   |     |               |    | E_Fix_Bias_param_2                                                                                                 |                                                                                                                                                                                                                                                                                                        |  |
|---|-----|---------------|----|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1 | 100 |               |    |                                                                                                                    | WOL+TCM1 Start<br>+001_07:00:00 = (08-Jul-<br>2010) 189_23:00:00                                                                                                                                                                                                                                       |  |
|   |     |               |    |                                                                                                                    | WOL+TCM1 End =<br>BREA1.<br>+001_11:00:00 = (09-Jul-<br>2010) 190_03:00:00                                                                                                                                                                                                                             |  |
| 1 | 110 |               |    |                                                                                                                    | In case of safe mode before<br>BREA1, execution of this<br>sequence (RP01) will be<br>terminated here and<br>sequence RP01BR will be<br>run instead.                                                                                                                                                   |  |
|   |     |               |    |                                                                                                                    | Two options here:                                                                                                                                                                                                                                                                                      |  |
|   |     |               |    |                                                                                                                    | 1) If S/C is operating on 4<br>wheels: TCM2 will be<br>executing according to plan<br>and it will take 3h                                                                                                                                                                                              |  |
| 1 | 190 |               |    |                                                                                                                    | 2) if S/C is operating on 3<br>wheels: the TCM2 will <b>not</b><br>be executed; TCM2 will<br>become an emergency<br>TCM; if TCM is executed it<br>will take 5h; if TCM is<br>executed payload will be<br>switched off before<br>execution and payload will<br>be turned back on<br>according to BREA2. |  |
| 2 | 200 |               |    |                                                                                                                    | TCM2 Start (only if S/C is<br>on 4 wheels)<br>+002_11:00:00 = (10-Jul-<br>2010) 191_03:00:00                                                                                                                                                                                                           |  |
| 2 | 210 |               |    |                                                                                                                    | TCM2 End (only if S/C is<br>on 4 wheels)<br>+002_14:00:00 = (10-Jul-<br>2010) 191_06:00:00                                                                                                                                                                                                             |  |
| 2 | 220 | +002_14:30:00 | on | ARPS807A # IES Mode<br>Control<br><br>VSK01260 =<br>SID2_HV_ON [ENG] #<br>ModeIES<br>VSK01265 = 0xff #<br>IESParam | IES ON in Normal mode<br>30min after completion of<br>second TCM (Absolute<br>Time = July 10, DOY 191,<br>06:30:00)                                                                                                                                                                                    |  |
|   |     |               |    | ARPS808A # ICA Mode<br>Control                                                                                     | ICA ON in Normal mode                                                                                                                                                                                                                                                                                  |  |
| 2 | 230 | +002_14:30:01 | on | VSK01261 =<br>SID2_HV_ON [ENG] #<br>ModeICA<br>VSK01266 = 0x0A #<br>ICAParam                                       | 30min after completion of second TCM                                                                                                                                                                                                                                                                   |  |
| 2 | 240 | +002_14:40:00 | on | ARPS140A # IES Sci Conf<br>and Acq                                                                                 | IES Table #5 Normal<br>Mode (Absolute Time =                                                                                                                                                                                                                                                           |  |
|   |     |               |    | VRPD1121 = 0x05 # IES-                                                                                             | July 10, DOY 191,<br>06:40:00)                                                                                                                                                                                                                                                                         |  |

|   |     |                              |    | DATA-ACQ-TABLE<br>TabNo<br>VRPD1011 = 0x01 [RAW]<br># IES-COMM-RATE-<br>MODE Rate                                                                                            |                                                                                                                                                                                                                                                |  |
|---|-----|------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|   | 300 |                              |    |                                                                                                                                                                              | +002_19:00:00 = (10-Jul-<br>2010) 191_11:00:00 =<br><b>BREA2</b> .<br>In case of safe mode before<br>BREA2 and after BREA1,<br>execution of this sequence<br>(RP01) will be terminated<br>here and sequence<br>RP01BR2 will be run<br>instead. |  |
|   | 350 | 002_19:46:00<br>10_11:46     | on | ARPF390A # RPC LAP Set<br>Bias<br><br>VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x8E8E #<br>E_Fix_Bias_param_2 | LAP bias P1 and P2 -5 nA<br>Both probes sunlit from<br>11:45.                                                                                                                                                                                  |  |
|   | 420 |                              |    |                                                                                                                                                                              | <b>CA - 2h50min53s (circa</b><br><b>3h)</b> .<br>+002_20:54:00 = (10-Jul-<br>2010) 191_12:54:00 -> RPC<br>to BURST mode                                                                                                                        |  |
|   | 430 | +002_20:54:00                | on | ARPS811A # MAG Mode<br>Change<br><br>VSK01264 = SID3 [ENG]<br># ModeMAG                                                                                                      | MAG to Burst mode                                                                                                                                                                                                                              |  |
| D | 440 | +002_20:54:01<br>10_12:54:01 | on | ARPS809A # LAP Mode<br>Change<br><br>VSK01262 = SID3 [ENG]<br># ModeLAP<br>VSK01267 = 0x44 #<br>LAParam<br>VSK01269 = 0x0005 # LAP<br>EEPROM Boot Bank                       | LAP to burst mode, macro<br>504 (EE), bias (-8,+3) nA<br>(bias adjust follows in step<br>485).                                                                                                                                                 |  |
|   | 450 | +002_20:54:02                | on | ARPS810A # MIP Mode<br>Control<br><br>VSK01263 = SID3 [ENG]<br># ModeMIP<br>VSK01268 = 0xff #<br>MIPParam                                                                    | MIP to Burst mode                                                                                                                                                                                                                              |  |
|   | 460 | +002_20:54:03                | on | ARPS140A # IES Sci Conf<br>and Acq<br><br>VRPD1121 = 0x00 # IES-<br>DATA-ACQ-TABLE<br>TabNo<br>VRPD1011 = 0x02 [RAW]<br># IES-COMM-RATE-<br>MODE Rate                        | IES Table #0 Burst Mode<br>(Absolute Time = July 10,<br>DOY 191, 12:54:03)                                                                                                                                                                     |  |
|   | 470 | +002_20:54:05                | on | ARPS808A # ICA Mode                                                                                                                                                          | ICA to Burst mode                                                                                                                                                                                                                              |  |

|   |     |                             |    | Control                                                                                                                                                |                                                                                                                                |  |
|---|-----|-----------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
|   |     |                             |    | <br>VSK01261 =<br>SID3_HV_ON [ENG] #<br>ModeICA<br>VSK01266 = 0x1A #<br>ICAParam                                                                       |                                                                                                                                |  |
|   | 475 | +002_21:00:00<br>10_13:00   | on | ARPF390A # RPC LAP Set<br>Bias<br><br>VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x8E8E # | LAP bias P1 and P2 -5 nA<br>Both probes sunlit since<br>11:45.                                                                 |  |
|   |     |                             |    | E_Fix_Bias_param_2<br>ARPF390A # RPC LAP Set<br>Bias<br><br>VRPD3046 = 0x0000 #                                                                        | LAP bias P1 +1 nA. P2 -5                                                                                                       |  |
|   | 480 | +002_23:24:00<br>10_15:24   | on | Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x8E7D #<br>E_Fix_Bias_param_2                                        | nA<br>P1 enters eclipse 15:24.                                                                                                 |  |
|   |     |                             |    | ARPF390A # RPC LAP Set Bias                                                                                                                            |                                                                                                                                |  |
|   | 485 | +002_23:43:00<br>10_15:43   | on | <br>VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x8E8E #<br>E_Fix_Bias_param_2             | LAP bias -5 nA on both<br>probes<br>P1 sunlit from 15:42. One<br>extra minute added by<br>experience from rehearsal.           |  |
|   |     |                             |    | ARPF390A # RPC LAP Set<br>Bias                                                                                                                         |                                                                                                                                |  |
|   | 490 | +002_23:44:00<br>10_15:44   | on | VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x7D8E #<br>E_Fix_Bias_param_2                 | LAP bias P1 -5 nA , P2 +1<br>nA (P1 sun, P2 eclipse)<br>P2 into HGA eclipse 15:44,<br>s/c eclipse 15:46                        |  |
|   | 500 |                             |    |                                                                                                                                                        | <b>CLOSEST APPROACH</b><br>+002_23:44:53 = (10-Jul-<br>2010) 191 15:44:53                                                      |  |
| Ε | 550 | 003_00:50:00<br>10_16:50:00 | on | ARPS809A # LAP Mode<br>Change<br><br>VSK01262 = SID3 [ENG]<br># ModeLAP<br>VSK01267 = 0x64 #<br>LAParam<br>VSK01269 = 0x0005 # LAP                     | LAP to LDL-enabled mode<br>0x704 (BM E-)<br>Bias is too high for Lutetia<br>(-29 nA) so we expect<br>saturation at this point. |  |
|   |     |                             |    | EEPROM Boot Bank                                                                                                                                       |                                                                                                                                |  |
|   | 560 | 003_00:51:04                | on | ARPS496A # Load MIP Cfg<br>Table<br>                                                                                                                   | MIP to LDL<br>(executes 2 AQPs after<br>LAP LDL setting)                                                                       |  |
|   |     |                             |    | VRPG4001 = 0x2600 #<br>Load_Config_detail_1                                                                                                            |                                                                                                                                |  |

|   |     |                              |    | VRPG4002 = 0x0011 #<br>Load_Config_detail_1<br>VRPG4003 = 0x0207 #<br>Load_Config_detail_1                                                                                        |                                                                                                                      |  |
|---|-----|------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|
|   | 570 | 003_00:52:08<br>10_16:52:08  | on | ARPF390A # RPC LAP Set<br>Bias<br><br>VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x808E #<br>E_Fix_Bias_param_2      | LAP bias P1 -5 nA for<br>sunlight (P2 0 nA though<br>now used by MIP)                                                |  |
|   | 580 | 003_01:54:00                 | on | ARPS496A # Load MIP Cfg<br>Table<br><br>VRPG4001 = 0x2600 #<br>Load_Config_detail_1<br>VRPG4002 = 0x0051 #<br>Load_Config_detail_1<br>VRPG4003 = 0x0207 #<br>Load_Config_detail_1 | MIP in LDL<br>transmitting level : divided y<br>2                                                                    |  |
|   | 600 |                              |    |                                                                                                                                                                                   | <b>CA + 3h 9min 53s (circa 3h)</b> .<br>+003_02:54:00 = (10-Jul-<br>2010) 191_18:54:00 -> RPC<br>back to NORMAL mode |  |
|   | 610 | +003_02:54:00                | on | ARPS811A # MAG Mode<br>Change<br><br>VSK01264 = SID2 [ENG]<br># ModeMAG                                                                                                           | MAG back to Normal<br>mode                                                                                           |  |
| F | 620 | +003_02:54:01<br>10_18:54:01 | on | ARPS809A # LAP Mode<br>Change<br><br>VSK01262 = SID2 [ENG]<br># ModeLAP<br>VSK01267 = 0x43 #<br>LAParam<br>VSK01269 = 0x0005 # LAP<br>EEPROM Boot Bank                            | LAP to normal mode,<br>macro 503: EE, P1 bias -8<br>nA, P2 bias +3 nA.                                               |  |
|   | 630 | +003_02:54:02                | on | ARPS810A # MIP Mode<br>Control<br><br>VSK01263 = SID2 [ENG]<br># ModeMIP<br>VSK01268 = 0xff #<br>MIPParam                                                                         | MIP back to Normal mode                                                                                              |  |
|   | 640 | +003_02:58:00<br>10_18:58:00 | on | ARPF390A # RPC LAP Set<br>Bias<br><br>VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x7D8E #<br>E_Fix_Bias_param_2      | LAP bias P1 -5 nA , P2 +1<br>nA (P1 sun, P2 eclipse)<br>Bias setting following<br>switch to normal mode.             |  |
|   | 650 | +003_04:54:04                | on | ARPS808A # ICA Mode<br>Control                                                                                                                                                    | ICA back to Normal mode                                                                                              |  |
|   |     |                              |    | <br>VSK01261 =                                                                                                                                                                    |                                                                                                                      |  |

|     |                           |    | SID2_HV_ON [ENG] #<br>ModeICA<br>VSK01266 = 0x0A #<br>ICAParam                                                                                        |                                                                                          |  |
|-----|---------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|
| 660 | +003_05:00:00             | on | ARPS140A # IES Sci Conf<br>and Acq<br><br>VRPD1121 = 0x05 # IES-<br>DATA-ACQ-TABLE<br>TabNo<br>VRPD1011 = 0x01 [RAW]<br># IES-COMM-RATE-<br>MODE Rate | IES Table #5 Normal<br>Mode (Absolute Time =<br>July 10, DOY 191,<br>21:00:00)           |  |
| 690 | +003_09:45:00             | on | ARPS808A # ICA Mode<br>Control<br><br>VSK01261 = HV_OFF<br>[ENG] # ModeICA<br>VSK01266 = 0xff #<br>ICAParam                                           | ICA HV off 15 min before<br>WOL start                                                    |  |
| 695 | +003_09:55:00             | on | ARPS141A # Change IES<br>Mode<br><br>VRPD1431 = LVSCI<br>[ENG]                                                                                        | IES to LVSCI mode 5 min<br>before WOL (Absolute<br>Time = July 11, DOY 192,<br>01:55:00) |  |
| 700 |                           |    |                                                                                                                                                       | WOL Start<br>+003_10:00:00 = (11-Jul-<br>2010) 192_02:00:00                              |  |
| 710 |                           |    |                                                                                                                                                       | WOL End<br>+003_12:00:00 = (11-Jul-<br>2010) 192_04:00:00                                |  |
| 720 | +003_12:05:00             | on | ARPS141A # Change IES<br>Mode<br><br>VRPD1431 = HVSCI<br>[ENG]                                                                                        | IES to HVSCI mode 5 min<br>after WOL (Absolute Time<br>= July 11, DOY 192,<br>04:05:00)  |  |
| 725 | +003_12:10:00             | on | ARPS808A # ICA Mode<br>Control<br><br>VSK01261 = HV_ON<br>[ENG] # ModeICA<br>VSK01266 = 0xff #<br>ICAParam                                            | ICA HV back ON 10 min<br>after WOL end                                                   |  |
| 730 | +003_12:15:00             | on | ARPS140A # IES Sci Conf<br>and Acq<br><br>VRPD1121 = 0x05 # IES-<br>DATA-ACQ-TABLE<br>TabNo<br>VRPD1011 = 0x01 [RAW]<br># IES-COMM-RATE-<br>MODE Rate | IES Table #5 Normal<br>Mode (Absolute Time =<br>July 11, DOY 192,<br>04:15:00)           |  |
| 740 | +003_19:06:00<br>11_11:06 | on | ARPF390A # RPC LAP Set<br>Bias<br><br>VRPD3046 = 0x0000 #<br>Denisty Fix Bias param 2                                                                 | LAP bias -5 nA on both<br>probes<br>P2 sunlit from 11:06.                                |  |
|     |                           |    | VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x8E8E #                                                                                         |                                                                                          |  |

|   |     |                           |    | E_Fix_Bias_param_2                                                                                                                     |                                                                                                                                             |  |
|---|-----|---------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|
|   |     |                           |    | ARPF390A # RPC LAP Set<br>Bias                                                                                                         |                                                                                                                                             |  |
|   | 745 | +003_19:39:00<br>11_11:39 | on | VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x8E7D #<br>E_Fix_Bias_param_2 | LAP bias P1 +1 nA, P2 -5<br>nA<br>P1 into eclipse 11:39.                                                                                    |  |
|   |     |                           |    | ARPF390A # RPC LAP Set<br>Bias                                                                                                         |                                                                                                                                             |  |
|   | 750 | +004_05:40:00<br>11_21:40 | on | VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x8E8E #<br>E_Fix_Bias_param_2 | LAP bias -5 nA on both<br>probes<br>P1 sunlit from 21:40.                                                                                   |  |
|   |     |                           |    | ARPF390A # RPC LAP Set<br>Bias                                                                                                         |                                                                                                                                             |  |
|   | 755 | +004_06:05:00<br>11_22:05 | on | VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x7D8E #<br>E_Fix_Bias_param_2 | LAP bias P1 -5 nA, P2 +1<br>nA<br>P2 into HGA eclipse 22:05,<br>s/c eclipse 04:43                                                           |  |
| G |     |                           |    | ARPF390A # RPC LAP Set<br>Bias                                                                                                         | LAP bias stepping P1: 7D<br>= $3 = +1 \text{ nA}$                                                                                           |  |
|   | 761 | +004_13:21:00<br>12_05:21 | on | VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x7D7D #<br>E_Fix_Bias_param_2 | First in a series of steps to<br>verify bias current settings.<br>Inserted after attitude<br>stabilizes at 004_13:15<br>(2010-07-12 05:15). |  |
|   |     |                           |    | ARPF390A # RPC LAP Set<br>Bias                                                                                                         |                                                                                                                                             |  |
|   | 762 | +004_13:22:00             | on | VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x7D7E #<br>E_Fix_Bias_param_2 | LAP bias stepping P1: 7E<br>= 2 = +0.7 nA                                                                                                   |  |
|   |     |                           |    | ARPF390A # RPC LAP Set<br>Bias                                                                                                         |                                                                                                                                             |  |
|   | 763 | +004_13:23:00             | on | VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x7D7F #<br>E_Fix_Bias_param_2 | LAP bias stepping P1: 7F =<br>1 = +0.344 nA                                                                                                 |  |
|   |     |                           |    |                                                                                                                                        |                                                                                                                                             |  |
|   | 764 | +004_13:24:00             | on | ARPF390A # RPC LAP Set<br>Bias<br>                                                                                                     | LAP bias stepping P1: $80 = 0 = 0$ nA                                                                                                       |  |
|   |     |                           |    | VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #                                                                 |                                                                                                                                             |  |

|     |               |    | IO_Poke_param_3<br>VRPD3050 = 0x7D80 #<br>E_Fix_Bias_param_2                                                                                                                 |
|-----|---------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 765 | +004_13:25:00 | on | ARPF390A # RPC LAP Set<br>Bias<br><br>VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x7D81 #<br>E_Fix_Bias_param_2 |
| 766 | +004_13:26:00 | on | ARPF390A # RPC LAP Set<br>Bias<br><br>VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x7D82 #<br>E_Fix_Bias_param_2 |
| 767 | +004_13:27:00 | on | ARPF390A # RPC LAP Set<br>Bias<br><br>VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x7D84 #<br>E_Fix_Bias_param_2 |
| 768 | +004_13:28:00 | on | ARPF390A # RPC LAP Set<br>Bias<br><br>VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x7D88 #<br>E_Fix_Bias_param_2 |
| 769 | +004_13:29:00 | on | ARPF390A # RPC LAP Set<br>Bias<br><br>VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x7D8E #<br>E_Fix_Bias_param_2 |
| 770 | +004_13:30:00 | on | ARPF390A # RPC LAP Set<br>Bias<br><br>VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x7D91 #<br>E_Fix_Bias_param_2 |
| 771 | +004_13:31:00 | on | ARPF390A # RPC LAP Set LAP bias stepping P1: 94 =<br>Bias -20 = -7 nA                                                                                                        |
|     |               |    | VRPD3046 = 0x0000 #                                                                                                                                                          |

|     |                           |    | Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x7D94 #<br>E_Fix_Bias_param_2                                                              |                                            |  |
|-----|---------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|
| 772 | +004_13:32:00             | on | ARPF390A # RPC LAP Set<br>Bias<br><br>VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x7D97 #<br>E_Fix_Bias_param_2 | LAP bias stepping P1: 97 =<br>-23 = -8 nA  |  |
| 773 | +004_13:33:00             | on | ARPF390A # RPC LAP Set<br>Bias<br><br>VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x7D9A #<br>E_Fix_Bias_param_2 | LAP bias stepping P1: 9A<br>= -26 = -9 nA  |  |
| 774 | +004_13:34:00             | on | ARPF390A # RPC LAP Set<br>Bias<br><br>VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x7D9D #<br>E_Fix_Bias_param_2 | LAP bias stepping P1: 9D<br>= -29 = -10 nA |  |
| 775 | +004_13:35:00             | on | ARPF390A # RPC LAP Set<br>Bias<br><br>VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x7DA0 #<br>E_Fix_Bias_param_2 | LAP bias stepping P1: A0<br>= -32 = -11 nA |  |
| 776 | +004_13:36:00             | on | ARPF390A # RPC LAP Set<br>Bias<br><br>VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x7DA3 #<br>E_Fix_Bias_param_2 | LAP bias stepping P1: A3<br>= -35 = -12 nA |  |
| 777 | +004_13:37:00             | on | ARPF390A # RPC LAP Set<br>Bias<br><br>VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x7DA6 #<br>E_Fix_Bias_param_2 | LAP bias stepping P1: A6<br>= -38 = -13 nA |  |
| 778 | +004_13:38:00<br>12_05:38 | on | ARPF390A # RPC LAP Set<br>Bias                                                                                                                                               | LAP bias P1 -5 nA, P2 +1<br>nA             |  |

|   |     |                           |    | <br>VRPD3046 = 0x0000 #<br>Denisty_Fix_Bias_param_2<br>VRPD3055 = 0x0000 #<br>IO_Poke_param_3<br>VRPD3050 = 0x7D8E #<br>E_Fix_Bias_param_2                                        | Back to nominal bias at end<br>of P1 bias stepping.                                          |  |
|---|-----|---------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| Η | 780 | +004_13:40:00<br>12_05:40 | on | ARPS809A # LAP Mode<br>Change<br><br>VSK01262 = SID2 [ENG]<br># ModeLAP<br>VSK01267 = 0x45 #<br>LAParam<br>VSK01269 = 0x0005 # LAP<br>EEPROM Boot Bank                            | LAP sweeps and cont<br>current for photoemission<br>determination (macro 505)<br>Vbias +10 V |  |
| I | 782 | +004_14:30:00<br>12_06:30 | on | ARPS809A # LAP Mode<br>Change<br><br>VSK01262 = SID2 [ENG]<br># ModeLAP<br>VSK01267 = 0x04 #<br>LAParam<br>VSK01269 = 0x0005 # LAP<br>EEPROM Boot Bank                            | LAP offset determination<br>(macro 104)                                                      |  |
| J | 785 | +004_14:55:00<br>12_06:55 | on | ARPS809A # LAP Mode<br>Change<br><br>VSK01262 = SID2 [ENG]<br># ModeLAP<br>VSK01267 = 0x73 #<br>LAParam<br>VSK01269 = 0x0005 # LAP<br>EEPROM Boot Bank                            | LAP to quiet LDL mode<br>(macro 803, Vbias P1 +10<br>V)                                      |  |
|   | 790 | +004_15:00:00             | on | ARPS496A # Load MIP Cfg<br>Table<br><br>VRPG4001 = 0x2600 #<br>Load_Config_detail_1<br>VRPG4002 = 0x0011 #<br>Load_Config_detail_1<br>VRPG4003 = 0x0205 #<br>Load_Config_detail_1 | MIP to LDL<br>(executes 5 minutes after<br>LAP LDL setting)                                  |  |
|   | 795 | +005_08:00:00             | on | ARPS496A # Load MIP Cfg<br>Table<br><br>VRPG4001 = 0x2600 #<br>Load_Config_detail_1<br>VRPG4002 = 0x0051 #<br>Load_Config_detail_1<br>VRPG4003 = 0x0205 #<br>Load_Config_detail_1 | MIP in LDL<br>transmitting level : divided<br>by 2                                           |  |
|   | 800 | 13_16:00                  |    |                                                                                                                                                                                   | RPC off                                                                                      |  |

**Table 2.** Details of LAP (and RPC) operations planning for the Lutetia flyby.

#### 4 Data

#### 4.1 Blocks A and H: bias voltage sweeps

Block A: 100707 16:10 - 23:10 Block H: 100712 05:40 - 06:30

Probe bias voltage sweeps, shown in Figure 5, were performed in blocks A and H. The 7 hours of sweep operations in block A are displayed in Figure 4. The effect of varying illumination is seen as sweeps with very varying character are superposed.

Probe 1 shows expected behaviour, with quite stable photoemission and low current when in eclipse, showing that the data are well calibrated and useful. However, probe 2 displays a different behaviour: here, there seems to be a constant offset of some -7 nA to the data. Deducting this remaining offset, the photoemission saturation current is around -9 nA on both probes, and the data points for probe 2 cluster around zero when the probe is in eclipse (the almost horizontal branch in Figure 4 below).

What could cause such an offset? It is not due to incorrectly determined electronics offsets. Figure 5 show the offset determinations in blocks B and I, giving very consistent results, particularly for probe 2. It should be noted that these offsets are determined immediately after the sweeps in blocks A and H are recorded. Furthermore, the eclipse sweeps for probe 2 from block H are very similar to those seen in Figure 4 (block A). This means that this extra offset is stable over more than four days, and cannot be blamed on some issue like the instrument not having reached thermal equilibrium or similar. Finally, the data shown here were calibrated manually, while the LAP archiving software gives very similar results (not shown): hence, the problem is not due to any issue of the calibration software. Further investigations will be necessary.



**Figure 4**. All LAP probe bias sweeps in block A (100707 16:10 - 23:10). P1 at left, P2 at right. Horizontal axes are bias voltage in volts, vertical axes measured current in nA.

#### 4.2 Blocks B and I: Offset determination

Block B: 100707 23:10-23:30 Block I: 100712 06:30 - 06:55

Good data were obtained in both blocks (Figure 5). If the current offsets y (in TM units) depend on the bias voltage (in DAC digital values) as y = k x + m, the two blocks give:

Block B: P1: k = -3.7986, m = 491.6788 P2: k = -2.1151, m = 295.1438 Block I: P1: k = -3.6325, m = 469.9852 P2: k = -2.1224, m = 296.2596



Figure 5. Offset determination sweeps in blocks B and I.

#### 4.3 Blocks C and D: Science operations before closest approach

Block C (NM): 100707 23:30 - 100710 12:54 Block D (BM): 100710 12:54 - 16:50 Figure 6 gives an overview of the main science data upstream of Lutetia, with the pointing inserted below. The large jumps in the data close to changes of the solar aspect angle (black curve in bottom panel) are due to bias changes in response to illumination changes. The substantial jumps in P1 voltage when the Y axis pointing changes (blue vertical lines) are interesteing, but it should be noted that P1 is in shadow at these times: the best data comes from the sunlit probe P2, which shows smaller signatures of these changes.



**Figure 6**. LAP probe voltages (in volts) for P1 (upper panel) and P2 (centre panel) during the approach to Lutetia, with spacecraft pointing as in Figure 2 (lower panel). Blue vertical lines indicate some of the times when the pointing of the s/c Y axis (red line in lower plot) changes. In the top plot, red is 16-bit snapshots at 18.75 kHz sampling frequency, black 20-bit voltages at 57.8 Hz.

## 4.4 Block D: Closest approach

100710 12:54 - 16:50

Figure 7 gives an overview of the data gathered with burst TM rate (BM), in formats as in Figure 6. Closest approach is close to 15:46.

Data are nominal, exept for the data gap for some minutes after 17:00, which may be due to data lost when dumping s/c memory to ground. RPC has requested a re-dump of these data.

The 16-bit data, gathered at 18.75 kHz and plotted in red, shows a high noise ratio after 16:54. This is expected, as MIP is in LDL mode here, which is known to give some noise in the first samples of each record of these data.

The attitude and the bias settings in response to its changes are discussed in Table 3.



**Figure 7**. Probe 1 and 2 voltages (in volts) during a period of solar aspect angle around 100 degrees. In the two upper plots, red indicates 16-bit snapshots at 18.75 kHz sampling frequency, while black is 20-bit voltages at 57.8 Hz.

Figure 8 zooms in on the data around closest approach. While the P2 data in particular are of course affected by the bias and illumination change, P1 data shows a nice and smooth behaviour with solar wind features clearly showing. The used settings thus seem to be well adapted for the Lutetia flyby. It should be noted that s/c outgassing due to previously not illuminated surfaces heating up and releasing water vapour and other compounds into space may be responsible for several large scale features (see Schläppi et al., Journal of Geophysical Research, 115, A12313 (2010), doi:10.1029/2010JA015734).



LAP probe potential (V1 is density proxy from about 16:10)

Figure 8. Probe 1 and 2 voltages (in volts, sampeld at 57.8 Hz) around closest approach.

#### 4.5 Block E: BM post-asteroid science operations in LDL mode

100710 16:50 - 18:54

The data from this operation are included in Figure 7, starting at 16:50, when P2 is handed over to MIP. As usual when running P1 in voltage mode, noise from MIP can be seen in the P1 data, but only intermittently with good data in between. The data are nominal.

#### 4.6 Block F: NM post-asteroid science operations

100710 18:54 - 100712 05:21

A data overview is shown in Figure 9. All data are nominal. The dominating features are due to illumination changes and associated bias settings.



**Figure 9**. Probe 1 and 2 voltages (in volts) during block F. Red is 16-bit snapshots at 18.75 kHz sampling frequency, black 20-bit voltages at 57.8 Hz.

## 4.7 Block G: bias current stepping

100712 05:21 - 05:40

The first bias steps are shown in Figure 10. The data are nominal, and the voltage response to P1 bias current change is clearly seen.



**Figure 10**. Probe 1 and 2 voltages (in volts) during bias current stepping on P1 (block G). Red is 16-bit snapshots at 18.75 kHz sampling frequency, black 20-bit voltages at 57.8 Hz.

### 4.8 Block J: LDL quiet mode

#### 100712 06:55 - 100713 16:00

An overview is shown in Figure 11. The data are nominal. The quantization steps are clearly seen, as expected for the low currents in the solar wind. There is little noise from MIP, also consistent with expectations as MIP should not perturb LAP in voltage bias mode.



Figure 11. Probe 1 current (in nA) during block J.

### 5 Conclusion

LAP worked as intended during the Lutetia flyby, and data are of nominal quality except for an offset current of around 7 nA on probe 2 only. As discussed in Section 4.1, this cannot be due to incorrect compensation for the LAP electronics offsets.

As expected, there are no immediately striking signatures of asteroid interaction, though it is still possible that something might be revealed in a full analysis. The commanding has been verified in data, and all settings seem to be well adapted for the operations. The goals of the operation were thus met.