ROSETTA-RPC-IES PLANETARY SCIENCE ARCHIVE INTERFACE CONTROL DOCUMENT

MARCH 2019

SwRI[®] Project 14568

Document No. 10991-IES-EAICD-05

Contract JPL 1345493

Prepared by

SOUTHWEST RESEARCH INSTITUTE[®] Space Science and Engineering Division 6220 Culebra Road, San Antonio, Texas 78228-0510 (210) 684-5111 • FAX (210) 647-4325

ROSETTA-RPC-IES PLANETARY SCIENCE ARCHIVE INTERFACE CONTROL DOCUMENT

SwRI Project 14568

Document No. 10991-IES-EAICD-05

Contract JPL -1345493

Prepared by: Bradley Trantham Archivist

Approved by:		Date:
	James L. Burch, PhD, IES Principal Investigator	
Approved by:	Raymond Goldstein, PhD, IES Project Manager	Date:
Approved by:	Shirlee Garcia, SwRI Project CM	Date:

Space Science and Engineering Division Southwest Research Institute P. O. Drawer 28510 6220 Culebra Road San Antonio, Texas 78228-0510 (210) 684-5111

Page

TABLE OF CONTENTS

ROSETTA-RPC-IES Planetary Science Archive Interface Control Document

1. INTRODUCTION	
1.1 Purpose and Scope	
1.2 Archiving Authorities	
1.2.1 ESA's Planetary Science Archive (PSA)	
1.3 Contents	
1.4 Intended Readership	
1.5 Applicable Documents	
1.6 Relationships to Other Interfaces	
1.7 Acronyms and Abbreviations	
1.8 Contact Names and Addresses	
2. OVERVIEW OF INSTRUMENT DESIGN, DATA HANDLING PL	ROCESS AND
PRODUCT GENERATION	
2.1 Instrument Design	
2.2 Scientific Objectives	
2.3 Data Handling Process	7
2.4 Data Products	7
2.4.1 Pre-Flight Data Products	
2.4.2 In-Flight Data Products	
2.4.2.1 Transition Cycles	
2.4.2.2 Flyback	
2.4.3 Software	
2.4.4 Calibration Software	
2.4.5 Pipeline Processing Software	
2.4.0 Documentation	
2.4.7 Derived und other Data Froducts	
2.4.0 Anchitary Data Osuge	
2.5 Data Caveaus	
2.5.1 Dioenage of Some Lievation Angle Dins	10
2.5.2 Individual Anode (Azimuth) Characteristics	
2.5.3.1 Ions	
2.5.3.2 Electrons	
2.5.4 Other caveats	
3. ARCHIVE FORMAT AND CONTENT	
3.1 Format and Conventions	12
3.1.1 Deliveries and Archive Volume Format	12
3.1.2 Data Set ID Formation	
3.1.3 Data Directory Naming Convention	
3.1.4 File Naming Convention	
3.2 Standards Used in Data Product Generation	

10991-IES-EAICD-05 Rev 5 Chg 0

ROSETTA-	RPC-IES Planetary Science Archive Interface Control Document	Page 2
3.2.1	PDS Standards	
3.2.2	Time Standards	
3.2.3	Reference Systems	
3.3 Da	ta Validation	
3.4 Co	ntent	
3.4.1	Volume Set	14
3.4.2	Data Set	14
3.4.3	Directories	
3.4.3.	1 Root Directory	
3.4.3.	2 Calibration Directory	15
3.4.3.	3 Catalog Directory	16
3.4.3.	4 Index Directory	16
3.4.3.	5 Browse Directory and Browse Files	17
3.4.3.	6 Document Directory	17
3.4.3.	7 Data Directory	17
4. DETAI	LED INTERFACE SPECIFICATIONS	
4.1 Str	ucture and Organization Overview	
4.2 Da	ta Sets, Definition and Content	
4.3 Da	ta Product Design	
4.3.1	Data Product Uncalibrated Design	

ROSETTA-RPC-IES Planetary Science Archive Interface Control Document

REVISION NOTICE

- Initial Issue: September 2005.
- Revision 1: Updated for version 2 archive products. August 2007
- Revision 2: Updated in response to comet phase archive review. May 2016.
- Revision 3: Updates after finalizing L2 and L3 data product updates. April 2017.
- Revision 4: Updates from Rosetta mission final archive review. December 2017.
- Revision 5: Updates after finalizing L5 data products. September 2018.

1. INTRODUCTION

1.1 Purpose and Scope

The purpose of this EAICD (Experimenter to (Science) Archive Interface Control Document) is to provide users of the RPC-IES instrument data with detailed description of the products and descriptions of how they were generated, including data sources and destinations. It is the official interface between the instrument team and the archiving authority.

1.2 Archiving Authorities

The Planetary Data System Standard is used as archiving standard by

- NASA for U.S. planetary missions, implemented by PDS
- ESA for European planetary missions, implemented by the Research and Scientific Support Department (RSSD) of ESA

1.2.1 ESA's Planetary Science Archive (PSA)

ESA implements an online science archive, the PSA,

- to support and ease data ingestion
- to offer additional services to the scientific user community and science operations teams as e.g.
 - search queries that allow searches across instruments, missions and scientific disciplines
 - o several data delivery options as
 - direct download of data products, linked files and data sets
 - ftp download of data products, linked files and data sets

The PSA aims for online ingestion of logical archive volumes and will offer the creation of physical archive volumes on request.

1.3 Contents

This document describes the data flow of the IES instrument on the Rosetta mission from the spacecraft until the insertion into the PSA for ESA. It includes information on how data were processed, formatted, labeled and uniquely identified. The document discusses general naming schemes for data volumes, data sets, data and label files. Standards used to generate the product are explained.

The design of the data set structure and the data product is given. An example data product is given in section 4.3 Data Product Design.

1.4 Intended Readership

This document's intended readership includes staff of the archiving authorities and potential users of the RPC-IES data.

1.5 Applicable Documents

DOCUMENTS/MOMENTS_CALCULATION/MOMENTS_CALCULATION.PDF

DOCUMENTS/FLUX_CALCULATION/FLUX_CALCULATION.PDF

Planetary Data System Data Archive Preparation Guide April 1, 2010, Version 1.4, JPL D31224

Planetary Data System Standards Reference, February 27, 2009, Version 3.8, JPL, D-7669, Part 2

Rosetta Archive Generation, Validation and Transfer Plan, January 2006, RO-EST-PL-5011

Rosetta Plasma Consortium Users' Manual, V 2.18, August 2018, RO-RPC-UM

Ion and Electron Sensor (IES) Flight Software Requirements Document, November 14, 2000, Rev. 0 Change 0, SWRI, Document No. 8182-FSRD-01

H.D.R. Evans, P. Bühler, W. Hajdas, E.J. Daly, P. Nieminen, A. Mohammadzadeh, Results from the ESA SREM monitors and comparison with existing radiation belt models, Advances in Space Research 42, 1527 (2008)

1.6 Relationships to Other Interfaces

N/A

1.7 Acronyms and Abbreviations

- CCSDS Consultative Committee for Space Data Systems
- DDS Data Distribution System
- ESA European Space Agency, Electrostatic Analyzer
- ESOC European Space Operations Centre
- FOV Field of View
- HGA High Gain Antenna

ROSETTA-RPC-IES Planetary Science Archive Interface Control Document

HGRTN	Heliocentric Radial-Tangential-Normal
IES	Ion and Electron Sensor
IESGS	IES Ground System
МСР	Microchannel Plate
NAIF	Navigation and Ancillary Information Facility
PDS	Planetary Data System
PSA	Planetary Science Archive
RDDS	Rosetta Data Distribution System
RPC	Rosetta Plasma Consortium
SPICE	NAIF information system
SREM	Standard Radiation Environment Monitor

1.8 Contact Names and Addresses

Bradley Trantham btrantham@swri.org Southwest Research Institute Space Science and Engineering Division 6220 Culebra Road, San Antonio, Texas 78238-5166 Telephone (210) 522-5241 Fax (210) 543-0052

Dr. Raymond Goldstein rgoldstein@swri.org Southwest Research Institute Space Science and Engineering Division 6220 Culebra Road, San Antonio, Texas 78238-5166 Telephone (210) 522-6223 Fax (210) 543-0052

Prachet Mokashi pmokashi@swri.org Southwest Research Institute Space Science and Engineering Division 6220 Culebra Road, San Antonio, Texas 78238-5166 Telephone (210) 522-5925 Fax (210) 647-4325

2. OVERVIEW OF INSTRUMENT DESIGN, DATA HANDLING PROCESS AND

PRODUCT GENERATION

2.1 Instrument Design

The IES for Rosetta is an electrostatic analyzer (ESA), featuring electrostatic angular deflection to obtain a field of view of 90° x 360°. The instrument objective is to obtain ion and electron distribution functions over the energy range from 4.32 eV/e up to 17.67 keV/e. The angular resolution for electrons is 5° x 22.5° (16 polar-angle sectors, referred to as elevation sectors henceforth and 16 azimuthal sectors). For ions, the angular resolution is 5° x 45° (16 elevation and 8 azimuthal sectors) with additional segmentation to 5° x 5° in the 45° azimuthal sector most likely to contain the solar wind (giving a total of 16 azimuthal sectors for ions). The back-to-back top hat geometry of the IES electrostatic analyzer allows it to analyze both electrons and positive ions with a single entrance aperture. The IES top hat analyzers have toroidal geometry with a smaller radius of curvature in the deflection plane than in the orthogonal plane. This toroidal feature results in a flat deflection plate geometry at the poles of the analyzers and has the advantage that the focal point is located outside the analyzers rather than within them, as is the case with spherical top hat analyzers. Particles within a narrow 8% energy pass band will pass through the analyzers and be focused onto the electron and ion microchannel plates (MCPs), which produce charge pulses on 16 discrete anodes, which define the azimuth acceptance angles. In addition, the IES entrance aperture contains electrostatic deflection electrodes, which expand its elevation angle field of view to $\pm 45^{\circ}$. With the typical top hat polar-angle field of view of 360°, the IES acquires a total solid angle of 2.8 pi steradians.

Operation of IES is controlled by its on-board software in conjunction with sets of (selectable) look up tables. A table in one set determines the sequence of voltages applied to the electrostatic analyzer, thereby selecting the energy/charge of electrons and ions entering the sensor. Likewise, a table in another set determines the sequence of voltages applied to the deflector plates, thereby defining the acceptance angle of the particles. In the typical operating mode, for each ESA voltage chosen the deflector is stepped over its range, the ESA voltage is stepped to its next value, and so on. A complete 2 voltage sequence thus determines a complete measurement cycle. Yet another set of tables control the summing of adjacent angle/energy bins enabling reduction of data volume to fit within the data volume allocated to the instrument. Several versions of the tables are stored in the instrument so different operating modes can be easily chosen. In addition, new tables can be uplinked if desired.

To fit within the data rates allocated to the instrument, even though data are always acquired over the complete measurement cycle, the range of energy steps for which the counts are returned may be limited. Additionally, counts acquired at discrete adjacent energy steps, elevation steps and azimuths are summed together and telemetered. The Mode ID of the cycle determines cycle duration, accumulation time, energy range and collapse, elevation range, and azimuth range, and collapse. Mode IDs have three non-zero characters and are specified for each cycle within the data files. Details for each mode are listed as tables in DOCUMENT/IES_MODES directory and CALIB directory. The tables list all modes used in flight including modes that were used only for commissioning and special in flight tests.

2.2 Scientific Objectives

IES measurements support goals to carry out investigations of (1) the solar wind interaction with the nucleus of comet 67P/Churyumov–Gerasimenko (CG), (2) the processes that govern the composition and structure of the cometary atmosphere, and (3) the interaction between the solar wind and the cometary atmosphere.

2.3 Data Handling Process

All RPC data packets were transmitted together during downlinks. RPC data were retrieved from the DDS at ESOC to a central RPC data server at Imperial College in London and then copied by IESGS at Southwest Research Institute. Please see section 2.4.5 for an overview of IESGS and section 1.8 for contact information.

2.4 Data Products

2.4.1 Pre-Flight Data Products

None. Raw calibration data are generated for internal use, but there are no current plans to submit these data to the PSA.

2.4.2 In-Flight Data Products

To ensure that the IES goals can be achieved, data will be archived as:

- Edited raw data (CODMAC level 2) the science data in raw counts converted to human and PDS readable format.
- Calibrated data (CODMAC level 3) the edited data with calibration factors included and converted to differential energy flux. Each flux data file has an associated file containing the uncertainties in flux data. Also included are corresponding files listing background counts subtracted from Level 2 data during conversion to Level 3.
- Derived data (CODMAC level 5) integrated moments densities, velocities and temperatures derived from Level 3 data for suitable periods.

These data may be used for cross-instrument calibrations, and both stand-alone and cross-instrument scientific analysis.

Table 1: Spacecraft Science Data Products in IES Data Sets				
Product Data Set Type		Maximum (MB / Day)	Mission Total, estimated	
	Level 2 (Counts)	67		
	Level 3 (Differential Energy Flux)	67		
ELC	Level 3 (Flux Uncertainty)	67	191,650	
	Level 3 (L2 Background Counts)	4		
	Level 5 (Moments)	1		
	Level 2 (Counts)	33		
	Level 3 (Differential Energy Flux)	33		
ION	Level 3 (Flux Uncertainty)	33	98,760	
	Level 3 (L2 Background Counts)	5		
	Level 5 (Moments)	1		

2.4.2.1 Transition Cycles

In Level 2 products, cycles with Mode IDs that have four non-zero characters may appear. These infrequently appearing cycles are called transition cycles and are not listed explicitly in mode tables. A transition cycle mode is constructed in-flight when IES switches from a longer duration mode to a shorter mode. It is identified by a four character mode ID. It has the duration of the preceding longer cycle and collapse properties of the following shorter cycle.

In Level 3 and higher products, these transition cycles do not appear. To reduce complexity during generation of the level 3 products and subsequent analysis by the users, the transition cycles are not processed and appear as gaps in data.

2.4.2.2 Flyback

Cycling of ESA voltages is completed using 128 steps (0 to 127) which include 4 steps (124 to 127) during 'flyback' (FB), the transition from the highest voltage of 1667 V (step 123) to 0 V (step 127). The actual transition time does not require all 4 steps, just one step. So science data readings during the first step of the flyback, 124 (FB1) should be considered unreliable to measure the background counts. Steps 125 (FB2) and 126 (FB3) may be considered as 0V for background measurements if not combined with other steps. The IES team has not used these flyback steps to determine background counts. In level three products these energy steps are not included.

2.4.3 Software

We do not intend to deliver any software.

2.4.4 Calibration Software

We do not intend to deliver any calibration software. A document describing the generation of the Level 3 differential energy flux data from the Level 2 counts data, FLUX_ANALYSIS.PDF is included in the DOCUMENTS directory in the Level 3 volume.

2.4.5 Pipeline Processing Software

The pipeline processing software is the IES Ground System (IESGS). IESGS extracts IES CCSDS packets from the RPC collective data files stored on the RPC central data server at Imperial College. These packets are used to build Level 2 ion and electron data products and the associated label files. The data products are grouped by date and written out to PDS compliant archive data files. One data file is created for each day. IESGS also generates Level 3 and higher level data products and the associated files from the Level 2 files. IES science products, archive and label files, plots and spectrograms on the IESGS website are available to team scientists.

2.4.6 Documentation

The document directory contains documentation that is considered to be either necessary or useful for users to understand the archive data set. These documents are not necessarily appropriate for inclusion in the PDS catalog. Documents may be included in multiple forms (ASCII, PDF, MS Word, HTML with image file pointers, etc.).

There is a separate directory for each archived document. Each directory includes the document in plain text (ASCII) and in another format (i.e. .DOC or .PDF). There is also a single label file that describes all the different formats of the included documents.

2.4.7 Derived and other Data Products

Integrated moments – densities, velocities and temperatures are derived from flux data for suitable periods and delivered as level 5 data products. When it is possible to calculate moments with a high degree of confidence, the derived data are included within files in the appropriate directory. Ion files contain moments for positively charged ions. Electron files contain moments for electrons and negatively charged ions. When no data exist, or it is not possible to calculate moments, or when the degree of confidence is low (low signal, uncertain mass and/or charge, potentially mixed species), data are excluded from the files. Moment files are not created when moments are unavailable for the entire day or when there are fewer than ten data points for the day.

2.4.8 Ancillary Data Usage

Some ancillary data such as the position and velocity of the spacecraft at the start of the day are included in the label file for each day. Rosetta SPICE kernels and toolkits provided by the NAIF (Navigation and Ancillary Information Facility) may be used to generate higher fidelity position and pointing information. Please refer to section 3.2.3 for information about reference systems.

2.5 Data Caveats

2.5.1 Blockage of Some Elevation Angle Bins

Several S/C structures and parts of other instruments block the IES FOV in portions of the most negative elevation angles. See the accompanying figure for an example. In particular, note that the positions of the

solar arrays and the HGA in the IES FOV vary throughout the mission.

2.5.2 Geometric Factor

The documented IES geometric factor was obtained by combining results of ray tracing, flight calibration, and laboratory measurements.

2.5.3 Spacecraft Potential

The data have not been corrected for spacecraft potential. For further discussion, please refer to DOCUMENTS/MOMENTS_CALCULATION/MOMENTS_CALCULATION.PDF.

2.5.4 Ion Moments

When no data exist, or it is not possible to calculate moments, or when the degree of confidence is low (low signal, uncertain mass and/or charge, potentially mixed ion species), data are excluded from the files. Moment files are not created when data are unavailable for the entire day or when there are fewer than ten data points for the day.

2.5.1 Electron Moments

Electron moments files contain mixed and unseparated electron populations (solar wind, coma, transient, etc.) and users should proceed with caution. For further discussion, please refer to DOCUMENTS/MOMENTS CALCULATION/MOMENTS CALCULATION.PDF.

When no data exist, or it is not possible to calculate moments, data are excluded from the files. Moment files are not created when data are unavailable for the entire day or when there are fewer than ten data points for the day.

2.5.2 Individual Anode (Azimuth) Characteristics

When counts from adjacent anodes are summed on board because of telemetry limitations, those anodes are given identical averaged values (sum/number of anodes).

2.5.2.1 Ions

Anodes 13 and 14 sometimes have elevated background counts so caution is recommended when using data from them. The cause for this is unknown.

The fine anodes (3 - 11) are combined on board in most operating modes because of telemetry limitations. In those cases each of these 9 anodes are given identical values (the sum/9).

The data from individual fine anodes, when provided, suffer from crosstalk between these anodes as well as the two coarse anodes adjacent to the fine anodes.

High noise rates are seen across energies and elevations in anode 12 when the sun is incident between anodes 2 and 3. The suspected cause for this is a light leak. These are also seen in anode 13 when counts in 12 and 13 are combined.

2.5.2.2 Electrons

Occasionally the electron data exhibit a signal at several narrow energy ranges between 200-2000 eV, appearing as short dashes in spectrograms, as a result of interference from a neighboring instrument (ICA). The occurrences are indicated in the flag column.

Anode 11 became noisy shortly after launch and since 16 September 2007 data from that anode have not been downloaded. In 2014, anode 12 started exhibiting similar behavior and was removed from the data stream on 29 April 2015. In operating modes where data from two or more anodes are combined, if counts from anodes 11 or 12 were included prior to their removal and summed with other anodes, those anodes will include the noise. The cause for these is unknown.

The octal charge amplifier and discriminator for anodes 8 to 15 started experiencing decreased sensitivity in early 2015 and it continued to deteriorate after that. So the counts in these anodes are consistently lower than the rest.

2.5.3 Other caveats

Other caveats are included in the data files in the form of quality flags, with descriptions in the label files.

3. ARCHIVE FORMAT AND CONTENT

3.1 Format and Conventions

3.1.1 Deliveries and Archive Volume Format

The IES team submits the archive volumes to PSA electronically. After successful checks, reviews and any updates, PSA transmits identical archives to PDS. PSA and PDS will be responsible for creating the physical volumes used for deep archiving.

3.1.2 Data Set ID Formation

RO-E/M/A/C/CAL/X/SS/D-RPCIES-x-phase-Vn.m

where:	
RO	= INSTRUMENT_HOST_ID
E/M/A/C/CAL/X/SS/D	= TARGET_ID (Earth/Mars/Asteroid/Comet/Calibration/Checkout/Solar System/Dust)
RPCIES	= INSTRUMENT_ID
Х	= $\{2,3,5\}$ CODMAC data processing level numbers.
phase	= Mission phase abbreviation (GRND, LEOP, CVP, CR1, EAR1, etc)
n.m	= Version number
Within each data set TAF	RGET NAME and TARGET TYPE are used to identify the current target.

(Thus they will not stay the same within one data set, but data set id will.)

3.1.3 Data Directory Naming Convention

The IES archive uses a year/month/day directory hierarchy.

```
DATA_SET_ROOT

+----+---....

DATA DOCUMENT CATALOG...

VYYY

I I

MM MM

I I

DD DD
```

3.1.4 File Naming Convention

For Level 2 data there are two IES data files generated per day. For Level 3 data, six files are generated per day.:

Level	2	FILENAME:	RPCIESYYYYDDD	nnn V	/V.EX	Г
Level	3	FILENAME:	RPCIESYYYYDDD ⁻	L3nnr	N ZZZ	VV.EXT
Level	5	FILENAME:	RPCIESYYYYDDD_	_L5nnr	_MOM_r	VV.EXT

ROSETTA-RPC-IES Planetary Science Archive Interface Control Document

where:

```
YYYY = Year
DDD = Day of Year
nnn = ELC (electron) or ION (ion)
zzz = FLUX (flux), FXUN (uncertainty), or L2BG (background)
VV = Archive product version
EXT = LBL or TAB
```

3.2 Standards Used in Data Product Generation

3.2.1 PDS Standards

IES complies to PDS version 3, and we use version 3.6 of the PDS standard reference.

3.2.2 Time Standards

Time(UTC) in LBL files: yyyy-doyThh:mm:ss.sss Time(UTC) in TAB files: yyyy-doyThh:mm:ss.sss Spacecraft Clock (OBT) in LBL files: "1/nnnnnnnn" Spacecraft Clock (OBT) in TAB files: nnnnnnnnn

3.2.3 Reference Systems

IES field of view definitions, anode and elevation sizes, their orientations with respect to the spacecraft and frame definitions are described in the SPICE kernels defined and provided by NAIF. At the time of writing of this document, the filenames for the latest versions of these instrument kernel and frame kernel files were ROS_RPC_V19.TI and ROS_V32.TF respectively.

These kernels can be loaded and used to determine the position and attitude of the spacecraft, orientation of the IES instrument, look directions of anodes and elevations in any coordinate system at any given time. The reference frame internal to the instrument is called ROS_RPC_IES. This can be used as a reference when converting pointing information to and from other reference frames such as the Rosetta spacecraft, comet-centric or heliocentric frames.

Level 5 files use Comet-centered Solar EQuatorial (CSEQ) as the reference frame to specify the velocity direction components. This is a common frame used in many other data sets and is referenced as " $67P/C-G_CSEQ$ " in SPICE.

3.3 Data Validation

Data will be scanned for internal consistency when decommutating to edited raw format. Before archiving, data are used internally by RPC scientists. All scientific analysis involving IES data are done using archive-formatted data products. To actually have the data used by scientists before delivery to archive is considered the best way of revealing problems and validating data, and this is the approach taken by IES.

After submission a peer review by PSA, PDS and the Rosetta archive team assesses the data set and documentation for compliance and scientific usability. Peer reviews are typically done for the initial submission and all subsequent format changes. Routine deliveries are merely checked for conformance to the standards put forth in this document.

3.4 Content

3.4.1 Volume Set

The IES archive are submitted electronically in volumes consistent with mission phases as defined by the Rosetta archiving team in consulation with PSA and PDS.

3.4.2 Data Set

Our naming convention for the data set follows the same principles as the DATA_SET_ID thus.

```
DATA SET NAME="ROSETTA-ORBITER E/M/A/C/CAL/X/SS/D RPCIES d PHASE
Vm.n"
where:
ROSETTA-ORBITER
                       = INSTRUMENT HOST NAME
E/M/A/C/CAL/X/SS/D
                       = TARGET NAME (EARTH MARS ASTEROID COMET
                     CALIBRATION CHECKOUT SOLAR SYSTEM DUST)
RPCIES
                       = INSTRUMENT ID
                       = CODMAC data processing level numbers 2,3
d
 or 5.
                       = Mission phase abbreviation (GRND, LEOP,
PHASE
 CVP, CR1, EAR1, etc)
                       = Version number
Vm.n
```

One data set is generated for each processing level for each phase. Multiple targets may be used for each data set and within each data set TARGET_ID will be used to identify the current target.

3.4.3 Directories

3.4.3.1 Root Directory

Table 2: Root Directory Contents		
File Name	File Contents	
AAREADME.TXT	This file completely describes the Volume organization and contents	
VOLDESC.CAT	A description of the contents of this Volume in a PDS format readable by both humans and computers	
CATALOG/	Catalog directory	
DOCUMENT/	Document directory	
INDEX/	Index directory	
DATA/	Data directory	
CALIB/	Calibration data directory	

3.4.3.2 Calibration Directory

Table 3: Calibration Directory Contents		
File Name	File Contents	
CALINFO.TXT	A description of the contents of this directory	
AZIMUTH_ANGLES.TAB	Table which maps anode numbers to degree values	
AZIMUTH_ANGLES.LBL	PDS detached label for AZIMUTH_ANGLES.TAB	
ELC_FLIGHT_G.TAB	Table which gives electron anode geometric factors in terms of energy and elevation step values	
ELC_FLIGHT_G.LBL	PDS detached label for ELC_FLIGHT_G.TAB	
ELEVATION_ANGLES.TAB	Table which maps elevation step numbers to degree values	
ELEVATION_ANGLES.LBL	PDS detached label for ELEVATION_ANGLES.TAB	
ENERGY_STEPS.TAB	Table which maps energy step numbers to electron-volt values	
ENERGY_STEPS.LBL	PDS detached label for ENERGY_STEPS.TAB	
IES_MODES.TAB	Machine readable table of IES mode data	
IES_MODES.LBL	PDS detached label for IES_MODES.TAB	
ION_FLIGHT_G.TAB	Table which gives ion anode geometric factors in terms of energy and elevation step values	

	· · · · · · · · · · · · · · · · · · ·
File Name	File Contents
ION_FLIGHT_G.LBL	PDS detached label for ION_FLIGHT_G.TAB
POLAR_SECTORS.TAB	Table which maps polar sectors in the SPICE IES instrument kernel to IES step values
POLAR_SECTORS.LBL	PDS detached label for POLAR_SECTORS.TAB
STEP_INTEGRATION.TAB	Table which maps measurement cycle length to step integration time
STEP_INTEGRATION.LBL	PDS detached label for STEP_INTEGRATION.TAB
YYYY/MM/DD	Directories for background and uncertainty files

Table 3: Calibration Directory Contents

The CALIB directory contains tables to aid in the interpretation of IES data. In level 3 archive datasets it also contains data files for subtracted background and estimate uncertainty values. Each level 3 differential energy flux data file in the DATA directory will also have corresponding background and uncertainty files in the CALIB directory. The documentation in DOCUMENT\FLUX_CALCULATION explains how these values are calculated.

3.4.3.3 Catalog Directory

Table 4: Catalog Directory Contents		
File Name	File Contents	
CATINFO.TXT	A description of the contents of this directory	
DATASET.CAT	PDS Data Set catalog description of all the IES data files	
INSTHOST.CAT	PDS instrument host (spacecraft) catalog description of the Rosetta orbiter spacecraft	
RPCIES_INST.CAT	PDS instrument catalog description of the IES instrument	
MISSION.CAT	PDS mission catalog description of the Rosetta mission	
RPCIES_PERS.CAT	PDS personnel catalog description of IES Team members and other persons involved with generation of IES Data Products	
REF.CAT	IES-related references mentioned in other *.CAT files	
RPCIES_SOFTWARE.CAT	Software catalog file	

3.4.3.4 Index Directory

This directory contains the index files generated by the ESA S/W PVV.

ROSETTA-RPC-IES Planetary Science Archive Interface Control Document

3.4.3.5 Browse Directory and Browse Files

Spectrograms or other browse products may be introduced at a later date.

3.4.3.6 Document Directory

Table 5: Document Directory Contents		
File Name	File Contents	
DOCINFO.TXT	A description of the contents of this directory and all subdirectories.	
ANODES/	Directory containing documentation on IES anodes	
ANODES/ANODES.PDF	IES technical drawing showing orientation of electron and ion anodes	
ANODES/ANODES.LBL	PDS detached label that describes ANODES.PDF	
FLUX_CALCULATION/	Directory containing documentation on IES flux calibrations	
FLUX_CALCULATION/FLUX_CALCUL ATION.PDF	Description of IES level 3 calibration process	
FLUX_CALCULATION/FLUX_CALCUL ATION.LBL	PDS detached label that describes FLUX_CALCULATION.PDF	
GROUND_CALIB/	Directory containing information on IES ground calibrations	
GROUND_CALIB/8182-CALPFRM- 01_R0.PDF	Calibration procedure for the IES proto-flight model	
GROUND_CALIB/8182-CALPFRM- 01_R0.LBL	PDS detached label for 8182-CALPFM-01_R0.PDF	
IES_EAICD/	Directory containing the IES EAICD document	
IES_EAICD/10991-IES-EAICD-05.PDF	The IES Experiment-Archive Interface Control Document in Portable Document Format (PDF)	
IES_EAICD/10991-IES-EAICD-05.LBL	PDS detached label that describes 10991-IES-EAICD-05.PDF	
IES_MODES/	Directory containing instrument configuration documentation	
IES_MODES/IES_MODES.PDF	Tables used to define IES data configurations	
IES_MODES/IES_MODES.LBL	PDS detached label for IES_MODES.PDF	
MOMENTS_CALCULATION/	Directory containing documentation on IES moment calculations	
MOMENTS_CALCULATION/MOMENTS _CALCULATION.PDF	Description of IES level 5 moment derivation process	
MOMENTS_CALCULATION/MOMENTS _CALCULATION.LBL	PDS detached label that describes MOMENTS_CALCULATION.PDF	

3.4.3.7 Data Directory

The data directory contains .TAB files that have the archive data in fixed width, comma separated columns corresponding to PDS table objects. Accompanying each .TAB file will be a label file (.LBL)

containing metadata about the archive. Gaps in coverage indicate that no IES data was collected or returned at that time. Gaps are also seen in the level 3 data products where the transition cycles have been removed during the calibration from level 2 to level 3.

4. DETAILED INTERFACE SPECIFICATIONS

4.1 Structure and Organization Overview

See section 3.1.3 for general overview.

Now as defined in section 3.1.3 we have the following structure for the DATA directory.

4.2 Data Sets, Definition and Content

IES data are archived in PDS table objects. Each line represents a set of electron or ion counts for the azimuth bin groups at a given time, energy, and elevation. The following columns will be first in each archive file:

Spacecraft Event Time (UTC) This field contains the UTC time at the spacecraft at the beginning of the sample integration. This field has been generated from the spacecraft clock counter using the SPICE toolkit and appropriate leap seconds and spacecraft clock kernels. Time is provided in the standard PDS DOY format (i.e. 2005-125T00:00:00.215). All records from a single integration are assigned the same time. The amount of accumulation time is

ROSETTA-RPC-IES Planetary	Science Archive Interface Control Document	Page 19
	governed by the science mode. Details ca DOCUMENT/IES_MODES.PDF. A complete requires the instrument to sweep through 16 el- angles) for each of the 128 energy steps. Eac takes 1/16th of an energy step to complet accumulation interval, counts are acquired simu- each of the 16 azimuths (or anodes).	n be found in integration cycle evation steps (or h elevation step e. During each altaneously from
Mode	Instrument mode, which determines the valu energy and elevation steps.	es used for the
Energy Start Step	To fit within the data rate allocated to the in acquired at discrete adjacent energy steps are s and telemetered. The number of energy steps to together depends on the instrument ENERGY_START_STEP number corresponds step number of that range.	strument, counts summed together that are summed mode. The s to the lowest
Energy Stop Step	To fit within the data rate allocated to the in acquired at discrete adjacent energy steps are s and telemetered. The number of energy steps to together depends on the instrument ENERGY_STOP_STEP number corresponds to number of that range.	strument, counts summed together that are summed mode. The the highest step
Angle Start Step	To fit within the data rate allocated to the in acquired at discrete adjacent elevation steps summed together and telemetered. The numl steps that are summed together depends on the i The ANGLE_START_STEP number correspon step number of that range.	strument, counts (or angles) are per of elevation nstrument mode. ids to the lowest
Angle Stop Step	To fit within the data rate allocated to the in acquired at discrete adjacent elevation steps summed together and telemetered. The numl steps that are summed together depends on the i The ANGLE_STOP_STEP number correspond step number of that range.	strument, counts (or angles) are per of elevation nstrument mode. Is to the highest

Following these columns is a series of azimuth columns. The value represents the number of electrons or ions observed in the azimuth bin (commonly referred to as "counts") at the given time, energy, and elevation. These values are transmitted in groups of azimuth bins, which we expand by dividing the value by the number of azimuth bins in the group.

4.3 **Data Product Design**

4.3.1 Data Product Uncalibrated Design

Example of edited raw data detached label file (e.g. RPCIES2014083 ELC V3.LBL):

10991-IES-EAICD-05 Rev 5 Chg 0 Page 20

ROSETTA-RPC-IES Planetary Science Archive Interface Control Document		Page	
PDS_VERSION_ID	=	PDS3	
DATA_SET_ID	=	"RO-C-RPCIES-2-PRL-V2.0"	
DATA_SET_NAME	=	TI CONTRACTOR OF CONT	
ROSETTA-ORBITER 67P RPCI	ES	2 PRL V2.0"	
STANDARD_DATA_PRODUCT_ID	=	"ELECTRON"	
PRODUCT_ID	=	"RPCIES2014083_ELC_V3"	
PRODUCT_TYPE	=	"EDR"	
PROCESSING_LEVEL_ID	=	"2"	
PRODUCT_CREATION_TIME	=	2017-05-12T22:12:54.771	
PRODUCT_VERSION_ID	=	"1.0"	
LABEL_REVISION_NOTE	=	"RELEASE VERSION 1.0"	
INSTRUMENT_MODE_ID	=	"N/A"	
INSTRUMENT_MODE_DESC	=	"N/A"	
ROSETTA: PIPELINE_VERSION_ID	=	"b6c1f1a55640056783501e499a62e4e04328b1b	od"
RECORD_TYPE	=	FIXED_LENGTH	
RECORD_BYTES	=	399	
FILE_RECORDS	=	14881	
MD5_CHECKSUM	=	"5635d4176c3683557e7c4f4dfcc9d41a"	
START_TIME	=	2014-03-24T20:44:59.266	
STOP_TIME	=	2014-03-24T22:50:51.269	
SPACECRAFT_CLOCK_START_COUNT	=	"1/354314635"	
SPACECRAFT_CLOCK_STOP_COUNT	=	"1/354322187"	
MISSION_NAME	=	"INTERNATIONAL ROSETTA MISSION"	
MISSION_ID	=	"ROSETTA"	
MISSION_PHASE_NAME	=	"PRELANDING"	
TARGET_NAME	=	"67P/CHURYUMOV-GERASIMENKO 1 (1969 R1)"	
TARGET_TYPE	=	"COMET"	
INSTRUMENT_HOST_NAME	=	"ROSETTA-ORBITER"	
INSTRUMENT_HOST_ID	=	"RO"	
INSTRUMENT_ID	=	"RPCIES"	
INSTRUMENT_NAME	=	Π	

```
ROSETTA PLASMA CONSORTIUM - ION AND ELECTRON SENSOR"
INSTRUMENT TYPE
                           = "PLASMA INSTRUMENT"
COORDINATE SYSTEM ID
                           = "N/A"
COORDINATE SYSTEM NAME
                        = "N/A"
NOTE
                            = "The values of the keywords
 SC SUN POSITION VECTOR, SC TARGET POSITION VECTOR,
 SC TARGET VELOCITY VECTOR are related to the Comet-centered Solar Orbital
 frame. The values of SUB SPACECRAFT LATITUDE and SUB SPACECRAFT LONGITUDE
 refer to the Cheops reference frame. All values are computed for the time
 t=START TIME. Distances are given in <km>, velocities in <km/s>, and
 angles in <deg>.
 Unit for SC SUN POSITION VECTOR is km
 Unit for SC TARGET POSITION VECTOR is km
 Unit for SC TARGET VELOCITY VECTOR is km/s
 Unit for SPACECRAFT ALTITUDE is km"
PRODUCER ID
                           = "RPC IES TEAM"
                           = "BRAD TRANTHAM"
PRODUCER FULL NAME
PRODUCER INSTITUTION NAME = "SOUTHWEST RESEARCH INSTITUTE, SAN ANTONIO"
                           = "1"
DATA QUALITY ID
DATA QUALITY DESC
                           = "Data quality assessed and indicated by values
in the quality flag"
SC SUN POSITION VECTOR
    (-9.042E7, 5.516E8, 3.036E8)
SC TARGET POSITION VECTOR
                            =
    (-1.766E6, -4.349E6, -1.099E6)
SC TARGET VELOCITY VECTOR
                           =
    (2.858E-1, 7.064E-1, 1.763E-1)
SPACECRAFT ALTITUDE = 4.821E6
```

ROSETTA-RPC-IES Planetary Science Archive Interface Control Document

SUB SPACECRAFT LATITUDE = -1.417E1 SUB SPACECRAFT LONGITUDE = 1.578E2 = " DESCRIPTION This file contains raw counts from the IES electron sensor acquired during the Prelanding phase between 2014-03-24T20:44:59.266 and 2014-03-24T22:50:51.269." ^HEADER = ("RPCIES2014083 ELC V3.TAB", 1) = ("RPCIES2014083 ELC V3.TAB", 2) ^TABLE OBJECT = HEADER = "TEXT" HEADER TYPE INTERCHANGE FORMAT = ASCII = 399 BYTES RECORDS = 1 = "Row of comma delimited, quoted column names" DESCRIPTION END OBJECT = HEADER = TABLE OBJECT INTERCHANGE FORMAT = ASCII ROWS = 14880COLUMNS = 24 = 399 ROW BYTES = " DESCRIPTION Data dimensions (time x energy x elevation x azimuth) are 60x128x16x16. Sometimes anode data are combined on board in certain operating modes because of telemetry limitations. In those cases each of the anodes is given identical values (sum/number of anodes)." OBJECT = COLUMN = "SPACECRAFT EVENT TIME (UTC)" NAME COLUMN NUMBER = 1

DATA_TYPE	= TIME
START_BYTE	= 1
BYTES	= 21
FORMAT	= "A21"
DESCRIPTION	= "

ROSETTA-RPC-IES Planetary Science Archive Interface Control Document

This field contains the UTC time at the spacecraft at the beginning of the sample integration. This field has been generated from the spacecraft clock counter using the SPICE toolkit and appropriate leap seconds and spacecraft clock kernels. Time is provided in the standard PDS DOY format (i.e. 2005-125T00:00:00.215). All records from a single integration are assigned the same time. The amount of accumulation time is governed by the science mode. Details can be found in DOCUMENT/IES_MODES.PDF. A complete integration cycle requires the instrument to sweep through 16 elevation steps (or angles) for each of the 128 energy steps. Each elevation step takes 1/16th of an energy step to complete. During each accumulation interval, counts are acquired simultaneously from each of the 16 azimuths (or anodes)."

END	OBJECT	=	COLUMN
-----	--------	---	--------

OBJECT	= COLUMN
NAME	= "MODE"
COLUMN_NUMBER	= 2
START_BYTE	= 23
BYTES	= 11
FORMAT	= "A11"
DATA_TYPE	= CHARACTER
DESCRIPTION	= "
Instrument mode, which	determines the values used for the energy
and elevation steps."	
END_OBJECT	= COLUMN

OBJECT = COLUMN NAME = "ENERGY_START_STEP"

ROSETTA-RPC-IES Planetary Science Archive Interface Control Document = 3 COLUMN NUMBER START BYTE = 35 = 16 BYTES DATA TYPE = ASCII INTEGER FORMAT = "I16" = " DESCRIPTION To fit within the data rate allocated to the instrument, counts acquired at discrete adjacent energy steps are summed together and telemetered. The number of energy steps that are summed together depends on the instrument mode. The ENERGY START STEP number corresponds to the lowest step number of that range." END OBJECT = COLUMN OBJECT = COLUMN = "ENERGY STOP STEP" NAME = 4 COLUMN NUMBER START BYTE = 52 = 16 BYTES DATA TYPE = ASCII INTEGER FORMAT = "I16" DESCRIPTION = " To fit within the data rate allocated to the instrument, counts acquired at discrete adjacent energy steps are summed together and telemetered. The number of energy steps that are summed together depends on the instrument mode. The ENERGY STOP STEP number corresponds to the highest step number of that range." END_OBJECT = COLUMN OBJECT = COLUMN NAME = "ANGLE START STEP" COLUMN NUMBER = 5 START BYTE = 69

ROSETTA-RPC-IES Planeta	ary Science Archive Interface Control Document Pag	ge
BYTES	= 16	
DATA_TYPE	= ASCII_INTEGER	
FORMAT	= "116"	
DESCRIPTION	= "	
To fit within the	e data rate allocated to the instrument,	
counts acquired a	at discrete adjacent elevation steps (or angles)	
are summed togeth	ner and telemetered. The number of elevation steps	
that are summed t	together depends on the instrument mode.	
The ANGLE_START_S	STEP number corresponds to the lowest step	
number of that ra	ange."	
END_OBJECT	= COLUMN	
OBJECT	= COLUMN	
NAME	= "ANGLE_STOP_STEP"	
COLUMN_NUMBER	= 6	
START_BYTE	= 86	
BYTES	= 16	
DATA_TYPE	= ASCII_INTEGER	
FORMAT	= "I16"	
DESCRIPTION	= "	
To fit within the	e data rate allocated to the instrument,	
counts acquired a	at discrete adjacent elevation steps (or angles)	
are summed togeth	ner and telemetered. The number of elevation steps	
that are summed t	together depends on the instrument mode.	
The ANGLE_STOP_ST	IEP number corresponds to the highest step	
number of that ra	ange."	
END_OBJECT	= COLUMN	
OBJECT	= COLUMN	
NAME	= "AZIMUTH 0 COUNTS"	
COLUMN_NUMBER	= 7	
START_BYTE	= 103	

```
= 16
 BYTES
  DATA_TYPE
                           = ASCII_REAL
  FORMAT
                           = "F16.4"
 MISSING CONSTANT
                           = "-1.000"
                           = "
  DESCRIPTION
    This field contains electron counts observed in
    azimuth bin 0 divided by the size of the azimuth
   bin grouping. A fill value of -1 is used when data are
   not available for this bin."
END OBJECT
                           = COLUMN
OBJECT
                           = COLUMN
 NAME
                           = "AZIMUTH 1 COUNTS"
 COLUMN NUMBER
                           = 8
 START BYTE
                           = 120
 BYTES
                           = 16
 DATA TYPE
                          = ASCII REAL
 FORMAT
                          = "F16.4"
                       = "-1.000"
 MISSING CONSTANT
                           = "
  DESCRIPTION
    This field contains electron counts observed in
    azimuth bin 1 divided by the size of the azimuth
   bin grouping. A fill value of -1 is used when data are
   not available for this bin."
END OBJECT
                           = COLUMN
OBJECT
                           = COLUMN
                           = "AZIMUTH 2 COUNTS"
 NAME
                           = 9
  COLUMN_NUMBER
                           = 137
  START BYTE
 BYTES
                           = 16
  DATA TYPE
                          = ASCII REAL
                          = "F16.4"
  FORMAT
                          = "-1.000"
 MISSING CONSTANT
```

ROSETTA-RPC-IES Planetary Science Archive Interface Control Document

10991-IES-EAICD-05 Rev 5 Chg 0 Page 27

ROSETTA-RPC-IES Planetary Science Archive Interface Control Document Page 27 - " DESCRIPTION This field contains electron counts observed in azimuth bin 2 divided by the size of the azimuth bin grouping. A fill value of -1 is used when data are not available for this bin." END OBJECT = COLUMN OBJECT = COLUMN NAME = "AZIMUTH 3 COUNTS" COLUMN NUMBER = 10 START BYTE = 154 BYTES = 16 = ASCII REAL DATA TYPE FORMAT = "F16.4" MISSING CONSTANT = "-1.000" = " DESCRIPTION This field contains electron counts observed in azimuth bin 3 divided by the size of the azimuth bin grouping. A fill value of -1 is used when data are not available for this bin." END OBJECT = COLUMN OBJECT = COLUMN NAME = "AZIMUTH 4 COUNTS" COLUMN NUMBER = 11 START BYTE = 171 = 16 BYTES = ASCII REAL DATA TYPE = "F16.4" FORMAT = "-1.000" MISSING CONSTANT - " DESCRIPTION This field contains electron counts observed in azimuth bin 4 divided by the size of the azimuth bin grouping. A fill value of -1 is used when data are

ROSETTA-RPC-IES Planetary Science Archive Interface Control Document not available for this bin." END OBJECT = COLUMN OBJECT = COLUMN = "AZIMUTH 5 COUNTS" NAME = 12 COLUMN NUMBER START_BYTE = 188 BYTES = 16 DATA_TYPE = ASCII REAL = "F16.4" FORMAT MISSING CONSTANT = "-1.000" DESCRIPTION = " This field contains electron counts observed in azimuth bin 5 divided by the size of the azimuth bin grouping. A fill value of -1 is used when data are not available for this bin." END OBJECT = COLUMN OBJECT = COLUMN = "AZIMUTH 6 COUNTS" NAME COLUMN NUMBER = 13 START BYTE = 205 BYTES = 16 DATA TYPE = ASCII REAL FORMAT = "F16.4" MISSING_CONSTANT = "-1.000" = " DESCRIPTION This field contains electron counts observed in azimuth bin 6 divided by the size of the azimuth bin grouping. A fill value of -1 is used when data are not available for this bin." END OBJECT = COLUMN

OBJECT = COLUMN

ROSETTA-RPC-IES Planetary Science Archive Interface Control Document = "AZIMUTH 7 COUNTS" NAME COLUMN_NUMBER = 14 = 222 START BYTE BYTES = 16 DATA TYPE = ASCII REAL FORMAT = "F16.4" MISSING_CONSTANT = "-1.000" - " DESCRIPTION This field contains electron counts observed in azimuth bin 7 divided by the size of the azimuth bin grouping. A fill value of -1 is used when data are not available for this bin." END OBJECT = COLUMN OBJECT = COLUMN = "AZIMUTH 8 COUNTS" NAME = 15 COLUMN NUMBER START BYTE = 239 = 16 BYTES DATA TYPE = ASCII REAL FORMAT = "F16.4" MISSING CONSTANT = "-1.000" = " DESCRIPTION This field contains electron counts observed in azimuth bin 8 divided by the size of the azimuth bin grouping. A fill value of -1 is used when data are not available for this bin." END OBJECT = COLUMN OBJECT = COLUMN NAME = "AZIMUTH 9 COUNTS" COLUMN NUMBER = 16 START BYTE = 256 BYTES = 16

```
= ASCII REAL
  DATA TYPE
  FORMAT
                           = "F16.4"
                          = "-1.000"
 MISSING CONSTANT
  DESCRIPTION
                           = "
    This field contains electron counts observed in
   azimuth bin 9 divided by the size of the azimuth
   bin grouping. A fill value of -1 is used when data are
   not available for this bin."
END OBJECT
                           = COLUMN
OBJECT
                          = COLUMN
                          = "AZIMUTH 10 COUNTS"
 NAME
 COLUMN NUMBER
                         = 17
 START BYTE
                          = 273
 BYTES
                          = 16
                          = ASCII REAL
  DATA TYPE
                          = "F16.4"
 FORMAT
 MISSING CONSTANT
                         = "-1.000"
                           = "
  DESCRIPTION
    This field contains electron counts observed in
    azimuth bin 10 divided by the size of the azimuth
   bin grouping. A fill value of -1 is used when data are
    not available for this bin."
END OBJECT
                           = COLUMN
OBJECT
                           = COLUMN
 NAME
                           = "AZIMUTH 11 COUNTS"
 COLUMN NUMBER
                          = 18
                          = 290
 START_BYTE
                          = 16
 BYTES
 DATA TYPE
                         = ASCII REAL
                          = "F16.4"
  FORMAT
 MISSING_CONSTANT
                       = "-1.000"
                           = "
  DESCRIPTION
```

ROSETTA-RPC-IES Planetary Science Archive Interface Control Document

ROSETTA-RPC-IES Planetary Science Archive Interface Control Document Page 31 This field contains electron counts observed in azimuth bin 11 divided by the size of the azimuth bin grouping. A fill value of -1 is used when data are not available for this bin." = COLUMN END OBJECT OBJECT = COLUMN = "AZIMUTH 12 COUNTS" NAME COLUMN NUMBER = 19 START BYTE = 307 BYTES = 16 DATA TYPE = ASCII REAL FORMAT = "F16.4" = "-1.000" MISSING CONSTANT DESCRIPTION = " This field contains electron counts observed in azimuth bin 12 divided by the size of the azimuth bin grouping. A fill value of -1 is used when data are not available for this bin." END OBJECT = COLUMN OBJECT = COLUMN NAME = "AZIMUTH 13 COUNTS" COLUMN NUMBER = 20 START BYTE = 324 BYTES = 16 DATA TYPE = ASCII REAL FORMAT = "F16.4" = "-1.000" MISSING_CONSTANT = " DESCRIPTION This field contains electron counts observed in azimuth bin 13 divided by the size of the azimuth bin grouping. A fill value of -1 is used when data are not available for this bin."

ROSETTA-RPC-IES Planetary Science Archive Interface Control Document END OBJECT = COLUMN OBJECT = COLUMN NAME = "AZIMUTH 14 COUNTS" = 21 COLUMN NUMBER = 341 START BYTE BYTES = 16 DATA TYPE = ASCII REAL = "F16.4" FORMAT = "-1.000" MISSING CONSTANT = " DESCRIPTION This field contains electron counts observed in azimuth bin 14 divided by the size of the azimuth bin grouping. A fill value of -1 is used when data are not available for this bin." END OBJECT = COLUMN OBJECT = COLUMN = "AZIMUTH 15 COUNTS" NAME COLUMN NUMBER = 22 START BYTE = 358 BYTES = 16 DATA TYPE = ASCII REAL FORMAT = "F16.4" = "-1.000" MISSING CONSTANT = " DESCRIPTION This field contains electron counts observed in azimuth bin 15 divided by the size of the azimuth bin grouping. A fill value of -1 is used when data are not available for this bin." END OBJECT = COLUMN = COLUMN OBJECT NAME = "CYCLE DURATION"

ROSETTA-RPC-IES Planetary Science Archive Interface Control Document

COLUMN NUMBER = 23 START BYTE = 375 BYTES = 11 FORMAT = "I16" DATA TYPE = ASCII INTEGER DESCRIPTION - " The length of the measurement cycle during which an entire voltage sweep of the electrostatic analyzers is completed." END OBJECT = COLUMN OBJECT = COLUMN = "OUALITY FLAGS" NAME COLUMN NUMBER = 24 START BYTE = 387 DATA TYPE = CHARACTER BYTES = 11 = "A11" FORMAT = " DESCRIPTION These flags describe the quality of the data. The quality is coded in an 8 byte string. Each character can have the following values: VALUE: MEANING: х property described by flag is still unknown no disturbance, good quality 0 1..9 specific disturbance/problems, see below Description of the specific flags: FLAG-STRING FLAG DESCRIPTION FLAG-STRING FLAG DESCRIPTION 54321 ::::: VOLTAGE 0 = MCP voltage at 2500 V (Nominal) :::: :::: 1 = MCP voltage above 2500 V (Gain Test)

ROSETTA-RPC-IES Planetary Science Archive Interface Control Document

10991-IES-EAICD-05 Rev 5 Chg 0 Page 34

2 = MCP voltage at 0 (Low Voltage Mode) :::: :::: ::::---- 2 SUN POINTING 0 = Sun is in field of view and not blocked ::: 1 = Sun is in field of view but may be blocked ::: 2 = Sun is out of field of view ::: ::: :::---- 3 INTERFERENCE FROM ION COMPOSITION ANALYZER INSTRUMENT 0 = No interference :: :: 1 = Interference may be observed :: ::---- 4 TRANSITION CYCLE : 0 = Not a transition cycle : 1 = Transition cycle : :----- 5 ENHANCED COUNTS DUE TO POSSIBLE PENETRATING RADIATION 0 = No enhanced counts due to penetrating radiation 1 = Enhanced counts due to penetrating radiation Data from Standard Radiation Environment Monitor (SREM) used for comparison." END OBJECT = COLUMN END OBJECT = TABLE

END