VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 1 of 150

VEX-VRA-IGM-IS-3009

Rosetta Mars Express Venus Express

MaRS/RSI/VeRa

Radio Science File Naming Convention And Radio Science File Formats

Issue: 12 Revision: 14

Date: 30.05.2016

Document: MEX-MRS-IGM-IS-3016

ROS-RSI-IGM-IS-3087 VEX-VRA-IGM-IS-3009

Prepared by		
Thomas Andert		
Approved by		

Martin Pätzold (MaRS/RSI Principal Investigator, VeRa Co-Investigator)

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 2 of 150

VEX-VRA-IGM-IS-3009

Page left free

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 3 of 150

VEX-VRA-IGM-IS-3009

Document Change Record

Issue	Rev	Sec	Date	Changes	Name
2.0	0.0	2	02.11.2002	Section 2 inserted	T.A.
		3		Section 3 inserted	
		4-7		Number of sections shifted	
		5		5.1.2.3 inserted	
		6		6.1.1.3.1 modified	
		All		Reviewed	
2.0	1.0	2	12.02.2003	Figure 2.1 updated	T.A.
		3		Section 3 edited	
		4		Table 4.1 and 4.2 edited	
		5		Section 5.1.2.2 inserted	
		6		Section 6.1.2 inserted	
2.0	2	All	22.05.2003	Some editing	mpa
3.0	0.0	All	04.06.03	Complete update	T.A.
4.0	0	All	08.07.2003	Complete revision	mpa
4	1	8.1	15.07.2003	Change of orbit predict file extension	mpa
		4.1		Change of RSR level 1a extension; predict	
				file extensions	
		6.1		Description of DSN file format	
4	2	All	16.07.2003	All ATDF and ODR format descriptions	mpa
				removed	
		8.1		New predict file formats	
		9.1		Range calibration file format	
4	3	4.2	20.07.2003	Introduction of descriptive files	mpa
				Old section 5 becomes new section 7	
		5			
4	4	4.1	22.07.2003	New level 2 file types	mpa
		6.2.2		Changed Doppler output file format	
	_			Changed file name format	
4	5	6.2.2	30.07.2003	Changed Doppler output file format	mpa
				changed ranging output format	
5	0	all	01.08.2003	after Stanford review	mna
)	0	all	01.00.2003	alter Starilord review	mpa

VENUS EXPRESS Radio Science VeRa
Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 4 of 150

5	1	All	17.08.2003	DSS station numbers	
				New file name formats	mpa
ļ				TNF level 1b extensions	
				After discussion CGN/Stan/JPL/ESA	
5	2	all	19.08.2003	New file name format	mpa
5	3	4.1	25.08.2003	New L02 file types in Table 4-1	mpa
ļ				Introducing L02 Doppler output files for X-	
ļ		6.2.2		band and S-band each	
5	4		26.08.2003	New L02 ranging file formats for X-band	mpa
ļ				and S-band each	,
5	5	All	15.09.2003	Some editing	mpa
ļ		4.1		New extensions for binary and ASCII files	'
ļ				New Volume ID	
ļ		3.1.4		New formats for X- and S-band calibrated	
ļ		6.1.2		Doppler files Level 2, after discussion with	
ļ		6.2.2		VD and JPB	
ļ					
ļ					
5	6	4.1	17.09.2003	Adding information about ancillary files	mpa
ļ		5.2.1.2		,	'
ļ		7.3			
ļ		8.4			
ļ		8.5			
		8.6			
6	0	All	19.09.2003	RS comments included	mpa
ļ				Document reorganized	
ļ		3.1.3		Volume name specified	
ļ		9		Calibration section expanded	
ļ		11		SPICE information included	
ļ		12		Example IFMS configuration file in	
				Appendix	
6	1	4.1	24.11.2003	New range data type identifier in Table 4.1	mpa
		8.1		Tables updated	
		8.2		Tables updated	
6	2	2	29.11.2003	New Figures 2.1 and 2.2	mpa
		4.1		New ODF file name definitions Table 4.1	
		6		TNF description replaced by ODF	
				throughout section 6	
		7.3		New section 7.3	
6	3	5.2.1	2.12.2003	Section 5.2.1.2.1.1 inserted	B.S.
				Tables updated	
		7.4.1		Tables updated	
		7.4.2		Tables updated	
		8.4		Tables updated	
	1	0.5		Tables updated	
6		8.5		Tables upualeu	

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 5 of 150

6	5	4.1	03.02.2004	Update Table 4.1	mpa
				New data type identifier	
		7.3.1		New section	
		8.1.1		New section	
		9.2		New section	
6	6	All	11.02.2004	Editing and correcting typos	mpa
		3.2		Table 3.4 updated	•
		3.3		Table 3.5 updated	
		4.1		Table 4.1 updated	
		5		Explaining text introduced	
		5.1		Section corrected and revised	
		6.1		Updated	
				Table 6.5 and 6.6 corrected	
		6.1.3.1		revised	
		6.1.3.2		revised	
		6.2		Tables 6.12 and 6.13 corrected	
		12.2		New section; example labels	
6	7	4.1	12.02.2004	Table 4.1 updated	mpa
		8.3		Section deleted	
		10.1		Section reworked and revised	
6	8	3.2	17.02.2004	Table 3.4 revised	mpa
		3.3		Table 3.5 revised	
		4.1		Table 4.1 revised; data types added	
		5.1.2.3		Section revised	
		6.1.1.3		Tables revised	
		0.00		ODF Header File deleted	
		6.2.2		Level 2 tables revised	
		6.3 7.6 – 7.8		Table 6.9 revised	
		9.5		Sections added Section added	
		9.5		Section added	
		2		Figur 2.1 updated	T.A.
6	9	12	18.2.2004	Appendix with Example PDS labels added	mf
6	10	12	15.03.2004	New section 12	
6	11	beginning	18.03.2004	Axel Hagermann deleted from distribution	mpa LC
0	11	beginning	10.03.2004	list	LC
		All		some editing	
		1.3		section updated	
		3.2.1		Table 3.4: data level in data set id	
		0.2.1		description changed from PSA-level to	
				CODMAC-level; footnote inserted	
		6.1.1.3.1		Level 1b file name corrected	
		6.1.1.3.2		Table 6-2, 6-3, 6-4 updated	
		7.1.2.2		Table 7-1 product type replaced by	
				standard data product id and definition	
				values for instrument id updated	
		13.2.1.2		Section updated	
	•				•

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 6 of 150

		13.2.3.1		Section updated	
		13.2.3.2		Section updated	
		7.1.2.2	22.3.2004	Table 7-1 Mission phase name inserted	
		''''		and updated	
		3.2.1		Table 3-4: data description part updated	
6	12	11	23.3.2004	SPICE kernel names updated	CS
6	13	4.1	06.04.2004	Table 4.1 new data types introduced for	mpa
	13	7.1	00.04.2004	covering BSR ancillary data from	пра
				DSN/Stanford	
		5.1.2.4		New section for BRO data	
		6.1.3.2.2		Section updated	
6	14	4.1	12.07.2004	Table 4.1 updated with new Doppler	LC
0	14	4.1	12.07.2004	names D1X,D1S,D1X,D2S instead of	LC
				DP1,DP2 and for level 1a&1b and	
				calibration file names updated:	
				C1S,C1X,C2X,C2S inserted	
		6.2.1.3.2.			
		6.2.1.3.2.1		updated with new Doppler file names	
		6.2.1.6.1.			
		6.2.2.2.			
		6.2.2.3.2.1			
		13.2. 9.4.1		Motor file name undeted TAD instead of	
		9.4.1		Meteo file name updated .TAB instead of	
		7.2.1.		.AUX as ending	
		1.2.1.		calibration file names updated	
				C1X,C1S,C2X,C2S instead of DP1,DP2;	
		611221		RNG,AG1,AG2 deleted from table	
		6.1.1.3.2.1 6.2.1.3.2.1		MJD time format updated to 12:00 01.01.2000	
				01.01.2000	
		6.2.1.3.2.2 6.2.1.3.2.4			
		6.2.2.3.2.1			
		6.2.2.3.2.2 9.1.2.			
		9.1.2. 9.2.3.			
		9.2.3. 9.3.2.			
		10.1.3. 6.2.1.3.2.2		DNC raplaced by DCV DCC	
		6.2.2.2		RNG replaced by RGX, RGS	
				updated with new Doppler, Ranging and Calibration file names	
		6.2.1.3.1.2		Campration the names	
		6.2.1.3.2.			
		7.2.1		Now coation added	
		5.2.1.1.3.		New section added	
		6.2.1.3.2.7		New section added	
		6.2.1.3.1.		Description extended	
		9.3.		New section "IFMS □oppler calibration file"	
		9.3.1.		added	

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 7 of 150

		9.3.2.			
		9.4.		Description extended	
7	0	4.1	25.08.2004	Table 4.1 updated	mpa
		5.2		Section 5.2 updated	et al.
				5.2.1.1.9 deleted	
		6.1		Tables in 6.1 updated	
		6.2		Section 6.2 updated	
		8.4 & 8.5		Section 8.4 and 8.5 file names corrected	
		11		Section 11 updated	
7	1	3	31.08.2004	Revision of section 3	mpa
7	2	3	6.9.2004	Volumes and Datasets Organization,	mf
				Formats and Name Specification	
				Reintroduced in Section 3	
7	3	3.2.1	13.9.2004	Data set id updated	LC
		3.2.2		Data_set_id updated	
		3.2.4.2.		Description of volume CD updated	
		7.1.2.2.		New keyword added processing_level_id	
		8.3.		8.3. section deleted	
		12		New section	
		13.2.3		Labels and tables updated	
		All		Update of time description in tables	
		7.3.1.1		file name updated	bs
		7.3.2.1		file name updated	
8	0	10	14.09.04	file name updated	
8	1	All	15.09.2004	Some editing	mpa
9	0	6.5	16.09.2004	Update tables 6.5 and 6.6	mpa
9	1	3.2.1.1.	20.09.2004	added radio science missione phase	LC
				description	
		3.2.1.2.		new section added: Dataset name	
		3.2.2.1		Table 3.4 updated	
		3.2.3.1		section updated. Definition of volume_id	
				clarified	
		3.2.4.2		volume_set_name defined	
				Figure 3.2: description of figure updated	
		3.2.5		New section: Volume series	
		3.2.5.1		New section: Volume series name	
		6		Tables 6.5 – 6.8, Tables 6.11-6.14 time	
		0.4.4.0.0		description updated	
		6.1.1.3.2.		Subsections 1-4 time description updated	
		/		Table 7.1 updated	
		8		Tables 8.1-8.4 time description updated	
		9.2.3.		time description updated	
		9.3.2. 9.4.2.			
				Table 10.2 time description undeted	
9	2	10.1.3. 4.1	22.09.2004	Table 4.1 undated	Mag
9			ZZ.U9.ZUU4	Table 4.1 updated New section 9.6	Мра
		9.6		INEW SECTION 3.0	

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 8 of 150

9	3	6	23.09.2004	Tables 6.6 and 6.7 edited Tables 6.1 – 6.4 updated	mpa
				New Table 6.5 included	
9	4	6	29.09.2004	Tables 6.1 – 6.9 updated	LC
				Tables 6.11 – 6.15 updated	
		7		Table 7-1 keyword original_product_id	
		_		replaced by source_product_id	
		8		Tables 8.1- 8.4 updated	
		9		sections 9.2.3, 9.3.2, 9.4.2, 9.6.2 updated	
		10		Table 10-2 updated	
		12.1.2		Description of ephemeris time corrected	
		12.2.3		De de cadada a casada labada basas a casa	
	_	13.3.3	00.40.0004	Replaced old example labels by new ones	
9	5	6	08.10.2004	Update of tables 6.6 and 6.7	mpa
9	6	4.1	22.10.2004	Update Table 4.1	mpa
		6		Revised tables 6.1 – 6.5	
				Update tables 6.6 and 6.7 after	
				discussions with GLT and RAS.	
		61101		Tables 6.8 and 6.9 revised	
		6.1.1.3.1		ODF L1A and L1B file names updated	
		9.5 11		DSN METEO file updated	
		11		Update of SPICE file names	
9	7	6	24.10.2004	Correction of Tables 6.6 and 6.7	mpa
10	1	4	27.10.2004	Update of Table 4.1. Inserted new file	LC
				ending .RAW	
				Section 4.2 file extension .RAW added	
		6 7		Section 6.2.1.3.1. file extension .RAW	
		7		added	
				Update of Table 7.1 updated value for	
				producer_id	
10	2	3	08.11.2004	Mission phases updated	CS
10	3	9.9	23.11.2004	Section about wrong uplink frequency	CS
				added	
10	4	3.2	29.11.2004	Data_set_id and Data_set_name changed	LC
				VOLUME_NAME updated	
10	5	6	01.12.2004	Tables section 6 updated	mpa
10	6	6	14.12.2004	Tables section 6 updated and new	CS
		13	_	example labels added	
10	7	?	?	RNG tables	mf?
10	8	6.2.2.3	20.12.2004	Text about merging in Level02 data	Cs
		7.1		added. Table 7.1 updated,	
4.5		0.0.0.0	04.40.000:	observation_type added.	
10	9	6.2.2.3	21.12.2004	Text about merging changed. Chapter	CS
		13.2		about Example labels deleted. New file	
				MEX-MRS-IGM-IS-3016_APP_A.TXT	
				created with example labels.	

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 9 of 150

10	10	3.2.3.2 6.2.2.3.2	13.1.2004	Own section for Volume Version Id added; Section about log-files (Level 2 processing) added.	CS
				Example table added about the connection	
				of level 2 und 1a data (because of raw-	
10	11	8.4.1.	19.1.2004	filename in source_product_id) Update of Mars centric Orbit file	LC
10	''	0.4.1.	19.1.2004	description	LO
		4		Table 4.1. description of date in file name	
		·		updated	
		7.3.2.1.		New MaRS compliant file name for EVTM	
				files updated	
10	12	9	28.01.2005	UPLINK_FREQ_CORRECT section	CS
				updated	
10	13	4	21.02.2005	Table 4.1. description of DSN level 2	LC
				Doppler files corrected: DPS and DPX	
				instead of D1X and D2X	
		6.1.1.3.1.		Added SUE0 in data source identifier	
		0.1.1.3.1.		Added .LOG as file ending for Log files	
				Description of DSN Ranging file names corrected: RGX and RGS instead of RNX	
				and RNS.	
		7.1		Table 7.1. description of SUE added	
		7.4.1.		added ENB files as example	
		7.6.		Titel corrected to DSN Network Monitor	
				and Control File	
		7.8.		Added section 7.8. about the Earth	
				Orientation file	
10	14	All	13.03.2005	Some editing	mpa
		6		Tables 6.1 – 6.4 corrected	
40	4.5	4.4	40.04.0005	Tables 6.8 and 6.9 corrected	1.0
10	15	4.1.	13.04.2005	updated file naming, added manifest files	LC
		9		Complete make over of section, devision between DSN and IFMS calibration files,	
				added GNC files	
		11.1.		Added description of modified Spice	
				Kernels	
10	16	4.1.	18.04.2005	Added description of SRF files (Surface	LC
		9.1.		Reflection Filer Files)	
10	17	4.1.	08.07.2005	Added description of BCL files (Bistatic	LC
				radar calibration log files), LIT (Light time	
				files), OPT (Orbit propagation and timing	
				files), removed GNC files, added source	
				description of level 2 solar conjunction files	
		5 4		RSRC and RSLC instead of RSR0	
		5.1. 9		Updated refenrences, remeoved GNC files removed GNC files	
	<u> </u>	<u> </u>		TETHOVER GIVE HIES	

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 10 of 150

		9.2.6.		Added description of Bistatic radar log files	
				(BCL)	
10	18	8.3	11.07.2005	Updated for Mars Express	CW
		8.4		Updated for Mars Express	
		8.5		Created section for Rosetta ancillary orbit	
				files	
10	19	3	08.08.2005	Section 3 inserted	T.A.
		11.1.2		File name identifier updated (UNBW	
				replaced with GEOM)	
		11.1.3		Table 11.2 updated	
10	20	5.3	11.08.2005	Data source identifier for Level 2 DSN	CW
				RSR open loop file containing data with	
				left circular polarization changed	
4.4	1		40.40.0005	Land de IEMO Des es Dista (edetad table	1.0
11	1	5	13.12.2005	Include IFMS Browse Plots (updated table	LC
		7.2.2.3.3.		5.1) Added new section	
		1.2.2.3.3.		IFMS Browse Plots (Level 2)	
11	2	11.1.2	31.01.2006	Planetary Constellation Geometry updated	AM
		11.1.2	31.01.2000	l lanetary Constellation Geometry aparted	Aivi
12	1	8.1.2.2.	3.02.2006	PDS label file header updated	LC
	1	4.2.1.1.	0.02.2000	Data set id updated with	
		1.2		instrument host id RO instead of ROS for	
				Rosetta and update of mission phases	
12	2	4.2.1.1	4.5.2006	Mission phases for Rosetta updated	CS
12	3	.2.1.1	17.5.2006	observation type changed	CS
12	4	4.2.1.1.	7.8.2006	inserted X as possible target id (i.e. sun or	LC
				checkout)	
		5.5.		Inserted ODFX and ODFS as possible	
				values	
		8.1.2.2.		added SUN as possible target name	
12	5	9.5.1	24.04.2007	File name description updated	CW
12	6	all	19.07.2007	Institute affiliation changed from IGM	LC
				(Institute for Geophysics & Meteorology,	
				University Clogne) to RIU (Rhenish	
				Institute of Environmental Research,	
40	 	4	04.00.000=	Planetary Science)	
12	7	4	24.09.2007	Update to volume keywords for Rosetta	LC
40	ļ	8.1.2.	00.04.0000	Update of keywords in Label header	
12	8	All	22.01.2008	Overall review and update where	CS
10	9	4.2	22 11 2000	necessary	1.0
12	9	4.2.	23.11.2009	Updated volume_id and data_set_id	LC
				section to keep it consistent with higher sience data file naming convention	
12	10	4	07.10.2009	Table 4-1 updated	JO
14		-	07.10.2003	Table 4-1 updated	30
		j		i abic 7-2 upualōu	

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 11 of 150

				Table 4-3 updated	
				Table 4-4 updated	
12	11	4.2.4.2	13.10.2010	New values for the keyword	JO
				VOLUME_SET_NAME for Venus Express	
				added	
12	12	4.2.1.2	30.11.2010	Table 4-3 updated	JO
12	13	4.2.1.2	24.06.2011	Table 4-3 updated	JO
		8.1.2.2		Table 8-1 updated	
12	14	4.1.2	30.05.2016	Figure 4-1 modified	JO
		4.2.3		Section modified	
		6.2		Table 6-1 updated	
		11		Section 'Geometry files' removed	

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 12 of 150

VEX-VRA-IGM-IS-3009

DISTRIBUTION LIST

Destination	Number of copies
MaRS/RSI/VeRa Team:	
Martin Pätzold	1
Silvia Tellmann	
Christina Stanzel	1
Thomas Andert	1
Markus Fels	1
Ludmila Carone	1
Len Tyler	1
Richard Simpson	1
Dave Hinson	1
Jörg Selle	1
Bernd Häusler	1
Véronique Dehant	1
Jean-Pierre Barriot	1

VENUS EXPRESS Radio Science VeRa
Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 13 of 150

VEX-VRA-IGM-IS-3009

ACRONYMS

AAS Atmosphere Analysis Software

AGC Automatic Gain Control

AMMOS Advanced Multi-Mission Operations System

ATDF Archival Tracking Data Files
ADC Analog to Digital Converter

BWG Beam Wave Guide ground station (DSN)

CALI calibration file CEB Cebreros

CHDO Compressed Header Data Object

DDS Data Distribution System
DSMS Deep Space Mission System

DSN Deep Space Network ESA European Space Agency

ESOC European Space Operations Centre

G/S Ground Station

HEF High Efficiency ground station (DSN)

IFMS Intermediate Frequency Modulation System

IGM Institute for Geophysics and Meteorology, University of Cologne

JPL Jet Propulsion Labatory

MAL Malargüe MEX Mars Express

MGS Mars Global Surveyor

NEA NEAR

NNO New Norcia Station (Perth)

ODF Orbit Data File

ODR Original Data Record PDS Planetary Data System

RIU Rhenish Institute for Environmental Research at the University of Cologne

ROS Rosetta

RSI Radio Science Investigation RSR Radio Science Receiver

S/C Spacecraft

SFDU Standard Formatted Data Unit

SUE Stanford University, Center for Radar Astronomy

TNF Tracking and Navigation File

ULS Ulysses

UniBw Universität der Bundeswehr UniBw

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016

Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 14 of 150 Page

VEX-VRA-IGM-IS-3009

Contents

1 INTRODUCTION		19
1.1 PURPOSE OF THE DOCUMEN	NT	19
1.3 REFERENCED DOCUMENTS	·	20
2 DATA FLOW		21
A HORD CONCEANED		22
3 USED CONSTANTS		
	DLUMES AND DATASETS ORGANIZATION	
AND NAME SPECIFICATION	<u> S</u>	25
	L CONCEPT	
	ORGANIZATION	
	AME SPECIFICATION	
4.2.5 VOLUME SERIES		40
5 CENEDAL BUENAMING	CONVENTION	44
5 GENERAL FILE NAMING	CONVENTION	<u>41</u>
5.3 DESCRIPTIVE FILES		41
	77 DG (7 DYDY 4.1)	40
6 RAW TRACKING DATA F.	ILES (LEVEL 1A)	<u> 49</u>
	ACKING DATA	
	LEVEL 1A DSN RAW DATA FILES	
	NG LEVEL 1A DSN RAW DATA FILES	
)	
6.2.1 FILE NAMES OF INCOMING	LEVEL 1A IFMS FILES.	53
# BDOCECCED #PACKING	DATEA (LEVIEL 1D AND 2)	
7 PROCESSED TRACKING I	DATA (LEVEL 1B AND 2)	<u> 57</u>
	- 1	
/.1.1 CLOSED-LOOP ODF LEVEL	L 1B PRODUCTS	57

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 15 of 150

7.1.2	CLOSED-LOOP ODF LEVEL 2 PRODUCTS	
7.1.3	OPEN-LOOP RSR LEVEL 2	74
7.2	ESA STATIONS (LEVEL 1B AND LEVEL 2)	78
7.2.1	CLOSED-LOOP IFMS LEVEL 1B PRODUCTS	78
7.2.2	CLOSED-LOOP IFMS LEVEL 2 PRODUCTS	83
8 FC	ORMAT OF DESCRIPTIVE FILES	88
<u> </u>	ONMIT OF BESCHIEFT TEES	
8.1	PDS LABEL FILES	88
8.1.1		
8.1.2	FILE FORMAT	
	IFMS CONFIGURATION FILES	
8.2.1		
8.2.2		
8.3	ESOC ANCILLIARY FILES	
8.3.1		
8.3.2		
8.4	Information files	
8.4.1	FILE NAME	
8.4.2	FILE FORMAT	
8.5	DSN Monitor File	
8.5.1	SPECIFICATION DOCUMENT	
8.5.2	FILE NAME	
8.5.3	FILE FORMAT	95
8.6	DSN NETWORK MONITOR AND CONTROL FILE	
8.6.1	SPECIFICATION DOCUMENT	
8.6.2	FILE NAME	
8.6.3	FILE FORMAT	96
8.7	DSN SEQUENCE OF EVENTS FILE	
8.7.1	SPECIFICATION DOCUMENT	97
8.7.2	FILE NAME	
8.7.3	FILE FORMAT	97
8.8	DSN EARTH ORIENTATION PARAMETER FILE	98
8.8.1	SPECIFICATION DOCUMENT	98
8.8.2	FILE NAME	98
8.8.3	FILE FORMAT	98
8.9	DSN LIGHT TIME FILE	99
8.9.1	SPECIFICATION DOCUMENT	99
8.9.2	FILE NAME	99
8.9.3	FILE FORMAT	99
8.10	DSN ORBIT PROPAGATION AND TIMING GEOMETRY FILE	100
8.10.1	SPECIFICATION DOCUMENT	100
8.10.2	PILE NAME	100
8.10.3	FILE FORMAT	100
<u>9</u> <u>O</u>	RBIT FILES	101
0.1	DODDLED AND DANCE PREDICTION SW.	101
	DOPPLER AND RANGE PREDICTION FILE	
9.1.1	SPECIFICATION DOCUMENT	
9.1.2	FILE NAME	101

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRa

Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 16 of 150

9.1.3 FILE FORMAT	
9.2 RECONSTRUCTED DOPPLER & RANGE ORBIT FILE	
9.2.1 FILE NAME	
9.2.2 FILE FORMAT	
9.3 SPACECRAFT HELIOCENTRIC CRUISE ORBIT FILE	
9.3.1 FILE NAME	
9.3.2 FILE FORMAT	
9.4 SPACECRAFT MARSCENTRIC/VENUSCENTRIC ORBIT 1	FILE 106
9.4.1 FILE NAME	106
9.4.2 FILE FORMAT	
9.5 ROSETTA ORBIT FILES	
9.5.1 FILE NAME	
9.5.2 FILE FORMAT	108
10 CALIBRATION FILES	109
10.1 IFMS CALIBRATION FILES	
10.1.1 IFMS RANGE CALIBRATION LEVEL 1B	
10.1.2 IFMS RANGE CALIBRATION LEVEL 2	
10.1.3 IFMS DOPPLER CALIBRATION FILES	
10.1.4 IFMS METEOROLOGICAL CALIBRATION	
10.1.5 CORRECTED UPLINK FREQUENCY	
10.2 DSN CALIBRATION FILES	
10.2.1 DSN METEO CALIBRATION FILE	
10.2.2 DSN MODIFIED METEO CALIBRATION FILE	
10.2.3 DSN Tropospheric Calibration File	
10.2.4 DSN IONOSPHERIC CALIBRATION FILE	
10.2.5 SURFACE REFLECTION FILTER FILES	
10.2.6 BISTATIC RADAR CALIBRATION LOG FILES	117
11 SPICE	121
11.1 INTRODUCTION	
11.1.1 SPICE FILES	
11.1.2 FILE HANDLING AND DESCRIPTION	
11.1.3 MODIFIED SPICE KERNELS	
11.2 SPK ORBIT KERNEL FILE	
11.2.1 FILE NAME	
11.3 EK EPHEMERIS KERNEL FILE	
11.4 CK C-MATRIX INSTRUMENT ATTITUDE FILE	
11.4.1 FILE NAME	
11.5 TLS LEAP SECOND KERNEL FILE	
11.5.1 FILE NAME	
11.6 FK FRAME KERNEL FILE	126
11.6.1 Frame Kernel File name	126
11.6.2 LOCATION KERNEL FILE NAME	126
11.7 IK INSTRUMENT KERNEL FILE	
11.7.1 FILE NAME	
11.8 ORBNUM ORBIT NUMBERING FILE	128
11.8.1 FILE NAME	128

ROSETTA Radio Science Investigations RSI MARS EXPRESS Radio Science Experiment MaRS VENUS EXPRESS Radio Science VeRa

Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 17 of 150

11.9 PCK PLANETARY CONSTANT FILE	129
11.9.1 FILE NAME	129
11.10 SCLK SPACECRAFT CLOCK KERNEL FILE	
11.10.1 FILE NAME	
12 TIME STANDARDS AND FORMATS	132
12.1 TIME STANDARDS	132
12.1.1 COORDINATED UNIVERSAL TIME (UTC)	132
12.1.2 DYNAMICAL TIME SCALE T _{EPH} FOR THE JPL DE405 EPHEMERIS	133
12.1.3 OTHER TIME STANDARDS	133
12.2 TIME FORMATS	
12.2.1 ISO TIME FORMAT	137
12.2.2 TIME IN FRACTIONS OF DAYS OF YEAR	137
12.2.3 EPHEMERIS TIME FORMAT	
13 APPENDIX	138
13.1 IFMS CONFIGURATION FILE EXPLANATION	138

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 18 of 150

VEX-VRA-IGM-IS-3009

page intentionally left free

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 19 of 150

VEX-VRA-IGM-IS-3009

1 INTRODUCTION

1.1 PURPOSE OF THE DOCUMENT

The Radio Science Investigations (RSI) experiment on board of ESA's mission Rosetta, Mars Express and Venus Express will use the S/C radio system to perform their experiments. Data from the tracking ground stations will be collected and preprocessed at RIU Cologne. This Document describes the different kinds of data files, their formats and naming conventions, which will be generated during the operational phase of both missions Mars Express and Rosetta.

1.2 DOCUMENT OVERVIEW

Section 2 shows the data flow of the tracking and processed data files

Section 3 defines volume and dataset name conventions of the data media for data archiving and distribution to PDS

Section 4 defines the general file naming convention of data files and label files of the different data archiving levels

Section 5 defines the file name convention and the formats of the raw data files used by Rosetta RSI and MaRS of level 1a

Section 6 defines the file name convention and the formats of the data files used by Rosetta RSI and MaRS up to level 2

Section 7 defines the formats and and file names of the descriptive files

Section 8 defines the file names and formats of the predicted and reconstructed orbit files, both from UniBw and ESOC

Section 9 defines the file names and formats of the calibration files from ESOC and DSN concerning ranging and media calibrations.

Section 10 defines file names and formats of geometries

Section 11 defines old and MaRS generated file names of files related to SPICE Section 12 is an Appendix

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 20 of 150

VEX-VRA-IGM-IS-3009

1.3 REFERENCED DOCUMENTS

The following documents are referenced in the MaRS FOM, and may be referred to if more information is needed.

	document Number	Title
1	IFMS_OCCFTP.PDF	IFMS-to-OCC interface
2	MEX-MRS-IGM-MA-3017	IFMS-Read-Program-Manual
3	ROS-RSI-IGM-MA-3113	RSR-Read-Program-Manual
	MEX-MRS-IGM-MA-3026	
4	820-013, 0159-Science	Radio Science Receiver
		Standard Formatted Data Unit
5	deleted	
6	deleted	
7	820-013, TRK-2-34	Deep Space Mission System
		(DSMS) Tracking System
		Data Archival Format
8	MEX-MRS-IGM-DS-3031	Solar Corona Analysis
		Software; Requirement Spec.
9	MEX-ESC-IF-5003	DDID Appendix H
10	MEX-MRS-IGM-IS-3019/	Rosetta/Mars Express/Venus
	ROS-RSI-IGM-IS-3079/	Express Archive Generation,
	VEX-VRA-IGM-IS-3007	Validation and Transfer Plan
11	ME-ESC-IF-5014	Configuration Control
		Document FTS Configuration
12	820-013 TRK 2-18	ODF
13		Media Calibration etc.
14		PDS document Zender
15		SPICE documentation
16	MEX-MRS-IGM-DS-3037/	ODF Level 1a to Level 1b
	ROS-RSI-IGM-DS-3127/	Software Design
	VEX-VRA-IGM-DS-5008	Specifications
17	JPL D-7669, Part 2	PDS Standards Reference

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 21 of 150

VEX-VRA-IGM-IS-3009

2 DATA FLOW

The raw tracking data files from DSN ground stations will be delivered through JPL and Stanford and processed at the RIU as shown in Figure 2-1. The raw tracking data files from the ESA ground stations will be delivered through ESOC and processed at the RIU as shown in Figure 2-2.

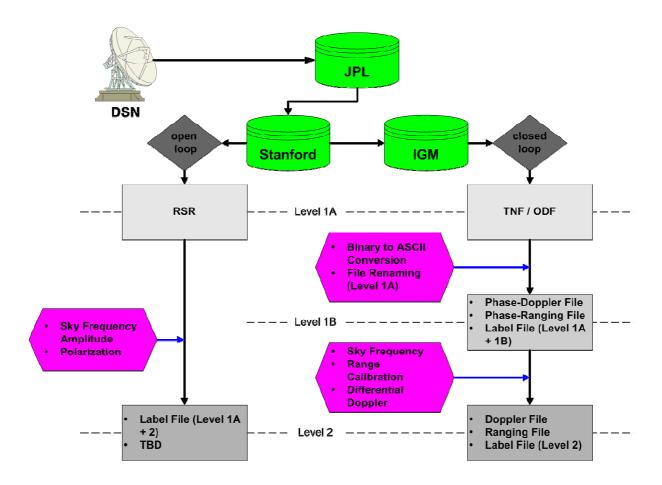


Figure 2-1: Data flow from the DSN stations.

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 22 of 150

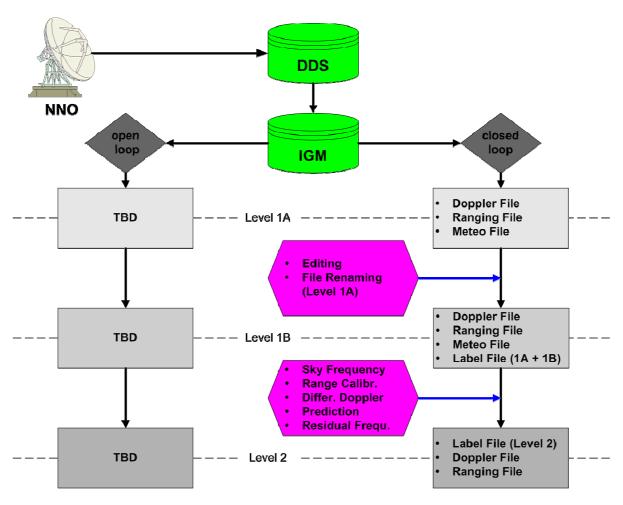


Figure 2-2: Data flow from ESA's NNO station.

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 23 of 150

VEX-VRA-IGM-IS-3009

3 USED CONSTANTS

DEF-3010: ASTRONOMICAL UNIT (AU)

1 AU = 149,597,870 kilometers

Reference: Strauss, B., Highsmith, D., Mars Exploration Rover Project Planetary

Constants and Models, Jet Propulsion Laboratory, Interoffice

Memorandum, IOM 312/015-02, 2002

DEF-3015: SOLAR RADIUS (R_o)

 $1 R_o = 696,000 \text{ km}$

DEF-3020: SPEED OF LIGHT

c = 299,792,458 m/s

DEF-3025: PHYSICAL CONSTANTS

Constant		Value	SI units
Electron charge	e	1.6022 10 ⁻¹⁹	As
Electron mass	m _e	9.1094 10 ⁻³¹	kg
Electric field constant	ϵ_0	8.8542 10 ⁻¹²	$s^4 A^2 m^{-3} kg^{-1}$
Plasma constant	1 1 e ²	40.30924	$\mathrm{m}^3\mathrm{s}^{-2}$
	$\overline{2} \overline{4\pi^2} \overline{m_e \varepsilon_0}$		

DEF-3030: CARRIER FREQUENCIES FOR MARS EXPRESS, VENUS EXPRESS AND ROSETTA

frequency band	uplink	downlink
S-band	2114.676 MHz	2296.482 MHz
X-band	7116.936 MHz	8420.432 MHz

Actual transmitted frequencies (up and downlink) may vary according to expected Doppler shift (approx. 10 – 100 kHz).

DEF-3031: Transponder constants and ratios

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 24 of 150

frequency band uplink	transponder ratios downlink/uplink	
	S-band	X-band
S-band	240/221	880/221
X-band	240/749	880/749

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 25 of 150

VEX-VRA-IGM-IS-3009

4 MARS, RSI AND VERA VOLUMES AND DATASETS

ORGANIZATIONS, FORMATS AND NAME SPECIFICATIONS

4.1 DEFINITIONS AND GENERAL CONCEPT

4.1.1 Definitions

4.1.1.1 Data Product

A labeled grouping of data resulting from a scientific observation. Examples of data products include spectrum tables, and time series tables. A data product is a component of a data set.

4.1.1.2 Data Set

The accumulation of data products, secondary data, software, and documentation, that completely document and support the use of those data products. A data set is part of a data set collection.

4.1.1.3 Data Set Collection

A data set collection consists of data sets that are related by observation type, discipline, target, or time, and therefore are treated as a unit, archived and distributed as a group (set) for a specific scientific objective and analysis.

4.1.1.4 Volume

A physical unit used to store or distribute data products (e.g. a CD_ROM or DVD disk) which contain directories and files. The directories and files include documentation, software, calibration and geometry information as well as the actual science data. A volume is part of a volume set.

4.1.1.5 Volume Set

A volume set consists of one or more data volumes containing a single data set or collection of related data sets. In certain cases, the volume set can consists of only one volume.

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRa

Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 26 of 150

VEX-VRA-IGM-IS-3009

4.1.2 <u>Data- and Volume Set Organization</u>

The general concept for the MaRS, RSI and VeRa Data- and Volume Set Design is shown in Figure 4-1.

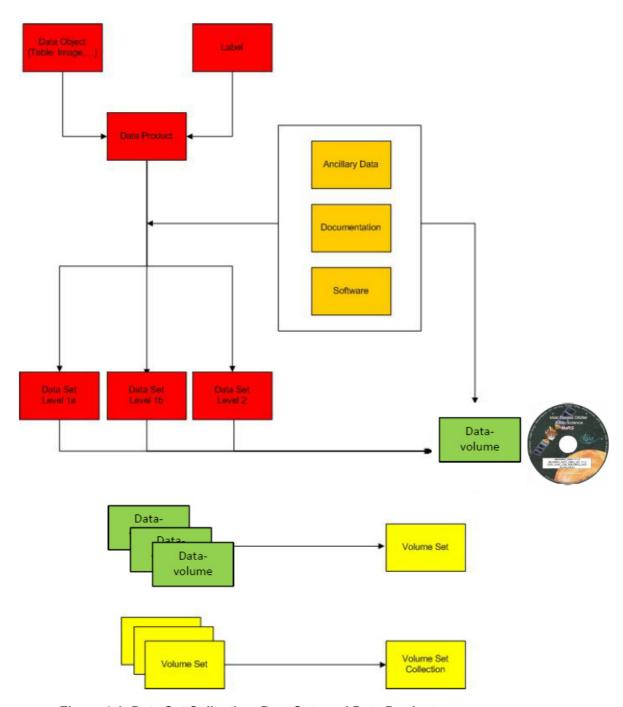


Figure 4-1: Data Set Collection, Data Sets and Data Products

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 27 of 150

VEX-VRA-IGM-IS-3009

4.2 VOLUME AND DATASET NAME SPECIFICATION

4.2.1 Dataset

4.2.1.1 Dataset ID

The Data Set ID is a unique alphanumeric identifier for the MaRS, VeRa and RSI data products. One data set corresponds to one physical data volume and both have a four digit sequence number. See Table 4-1 for more information.

XXX-Y-ZZZ-U-VVV-NNNN-WWW

Acronym	Description	Example
XXX	Instrument Host ID	MEX
		RO
		VEX
Υ	Target ID	M (Mars)
		V (Venus)
		C (Comet Churyumov-
		Gerasimenko)
		L (asteroid Lutetia)
		S (asteroid Steins)
		X (for others i.e. Sun)
ZZZ	Instrument ID	MRS
		RSI
		VRA
U	Data level ¹	1 raw data/ESOC/DDS
	(CODMAC Level)	2 edited raw data
		3 calibrated data
		5 derived/scientific data
		1/2/3 (Data set contains raw and
		calibrated DATA)
VVV	mission phases for level 1/2/3	MCO Mission Commissioning
	(MaRS mission phases	CR1 cruise first part
	deviate from the official MEX	PRM prime mission
	mission phases see below)	NMP nominal mission phase
		EXT1 extended mission 1
NNNN	A 4 digit sequence number	0123
	which is identical to the Radio	
140404	Science VOLUME_ID	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
WWW	Version number	V1.0

Table 4-1: Dataset ID

¹ In the keyword DATA_SET_ID the CODMAC-levels are used instead of PSA-level. In all other file names and documents we keep PSA-level. Examples:

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 28 of 150

VEX-VRA-IGM-IS-3009

MEX-M-MRS-1/2/3-PRM-1144-V1.0 RO-C-RSI-1/2/3-PRL-0099-V2.0 VEX-V-VRA-1/2/3-NMP-0124-V1.0

It should be noted that the MaRS mission phase names used in the data_set_id **do not** correspond to the mission phase names as defined from ESA for Mars Express. However, since the radio science team tries to archive data for Mars Express as well as for Venus Express and Rosetta, it was granted the use of spacecraft-independent mission phase names which can be used for all three missions. Nevertheless, for Venus Express the ESA-defined mission phases will be used.

For the mission_phases definition see **Table 4-2**.

Acronym	Description	Timespan			
	For Mars Express				
NEV	Near Earth Verification	2003-06-02 at 00:00:00 UTC to			
		2003-07-31 at 23:59:59 UTC			
CR1	Cruise 1	2003-08-01 at 00:00:00 UTC to			
		2003-12-25 at 23:59:59 UTC			
MCO	Mission Commissioning	2003-12-26 at 00:00:00 UTC to			
		2004-06-30 at 23:59:59 UTC			
PRM	Prime Mission	2004-07-01 at 00:00:00 UTC to			
		2005-12-31 at 23:59:59 UTC			
EXT1	Extended Mission 1	2006-01-01 at 00:00:00 UTC to			
		2007-09-30 at 23:59:59 UTC			
EXT2	Extended Mission 2	2007-10-01 at 00:00:00 UTC to			
		2009-12-31 at 23:59:59 UTC			
EXT3	Extended Mission 3	2010-01-01 at 00:00:00 UTC to			
		2012-12-31 at 23:59:59 UTC			
EXT4	Extended Mission 4	2013-01-01 at 00:00:00 UTC to			
		2014-12-31 at 23:59:59 UTC			
EXT5	Extended Mission 5	2015-01-01 at 00:00:00 UTC to			
		2016-12-31 at 23:59:59 UTC			
For Venus Express					
NMP	Nominal Mission Phase	2005-11-09 to 2007-10-02			
EXT1	Extended Mission 1	2007-10-03 to 2009-05-30			
EXT2	Extended Mission 2	2009-05-31 to 2010-08-21			
EXT3	Extended Mission 3	2010-08-22 to 2012-12-31			
EXT4	Extended Mission 4	2013-01-01 to 2015			

Table 4-2: Mission phase description

The mission phases and their abbreviations for Venus Express will be used in the DATA_SET_ID and DATA_SET_NAME. In the data labels, however, the value of the

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 29 of 150

VEX-VRA-IGM-IS-3009

keyword MISSION_PHASE_NAME is fixed and have other definitions, belonging to defined subphases. These subphases can be found in the MISSION.CAT (CATALOG folder of the Venus Express dataset) or in the MISSION_PHASE.TAB document (DOCUMENT/ESA DOC folder).

Rosetta mission phase definitions can be found in RO_EST_TN_3372.PDF in the DOCUMENT/ESA_DOC directory.

For higher science data products data_set_id please refer to the higher science file naming convention document MEX-MRS-RIU-IS-3050.

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 30 of 150

VEX-VRA-IGM-IS-3009

4.2.1.2 Dataset Name

The dataset name is the full name of the dataset already identifiable by a dataset id. Dataset names shall be at most 60 characters in length and must be in upper case. See Table 4-3 for more information.

Description	Example
Instrument Host Name	MARS EXPRESS
	ROSETTA ORBITER
	VENUS EXPRESS
Target name	MARS
	VENUS
	67P (for Comet Churyumov-
	Gerasimenko)
	CHECK (commissioning Rosetta)
	LUTETIA
	STEINS
	SKY (commissioning VEX)
	PHOBOS
Instrument id	MRS
	RSI
	VRA
data processing level	1/2/3
number in CODMAC level	5
Data description:	MISSION COMMISSIONING CRUISE 1
mission phases for level 1/2/3:	PRIME MISSION
(MaRS misson phases	NMP
can deviate from the MEX	
official phase names. See	EXTENDED WIISSION
above)	
For higher science data:	
Measurement type	OCCULTATION
A 4 digit sequence	0123
number	
Version number	V1.0

Table 4-3: Dataset name

In order to not exceed 60 characters for the Dataset name during the Venus Express nominal mission phase, the abbreviation 'NMP' will be used for the mission phase within the Dataset name instead of 'NOMINAL MISSION PHASE'.

Examples:

MARS EXPRESS MARS MRS 1/2/3 MISSION COMISSIONING 0123 V1.0 VENUS EXPRESS VENUS VRA 1/2/3 NMP 0099 V2.0 ROSETTA ORBITER 67P RSI 1/2/3 CRUISE 1 1144 V3.0

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 31 of 150

VEX-VRA-IGM-IS-3009

4.2.2 **Dataset Collection**

4.2.2.1 Dataset Collection ID

The data set collection ID element is a unique alphanumeric identifier for a collection of related data sets or data products. The data set collection is treated as a single unit, whose components are selected according to a specific scientific purpose. Components are related by observation type, discipline, target, time, or other classifications. See Table 4-4 for more information.

XXX_Y_ZZZ_U_VVV_IIIIIIIII_TTT

Acronym	Description	Example
XXX	Instrument Host ID	MEX RO VEX
Y	Target ID	M (Mars) V (Venus) C (Comet 67P/Churyumov-Gerasimenko tbc) L (asteroid Lutetia tbc) S (asteroid Steins tbc)
ZZZ	Instrument ID	MRS RSI VRA
U	DATA_COLLECTION_I D the CODMAC-levels	1 (Raw data) 2 (Edited raw data) 3 (Calibrated data) 5 (Higher Science Data) 1/2/3 (Data set contains raw, edited and calibrated data)
VVV	Data Description (Acronym)	MCO commissioning CR1 cruise first part PRM prime mission EXT extended mission
1111111111	Data Description (Detailed)	ROCC Occulation Profiles GRAV Gravity Data RANG Apocenter Ranging BSR Bistatic Radar Spectra PHOBOS Phobos Flyby SUPCON superior solar conjunction INFCON inferior solar conjunction
TTT	Version Number	V1.0

Table 4-4: Dataset Collection ID

Examples:

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 32 of 150

VEX-VRA-IGM-IS-3009

MEX-M-MRS-5-PRM-ROCC-V1.0 RO-C-RSI-5-MCO-GRAV-V2.0 VEX-V-VRA-5-MCO-BSR-V1.0

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 33 of 150

VEX-VRA-IGM-IS-3009

4.2.3 **Volume**

4.2.3.1 Volume ID

The Volume ID is a unique identifier for a single MaRS, RSI or VeRa data volume, including a complete measurement. Two kinds of Volume ID's are used, the ESA and RSI Volume ID:

ESA PSA Volume-ID:

The Volume ID is formed using a mission identifier, an instrument identifier of 3 characters, followed by an underscore character, followed by a 4 digit sequence number. In the 4-digit number, the first one represents the kind of measurement, the remaining digits define the range of volumes in the volume set.

The first digit of the 4-digit sequence number:

- 0: Commissioning
- 1: Occultation
- 2: Gravity
- 3: Solar Conjunction
- 4: Bistatic Radar
- 5: Passive/Active Checkouts
- 6: Swing-bys/Fly-bys
- 7: Cometary Coma Observations
- 9: Higher Science data

The Volume-ID looks like:

XXXXXX UZZZ

Acronym	Description	Example
XXXXXX	Missionhost and	MEXMRS
	Instrument ID	RORSI
		VEXVRA
ZZZZ	4 digit sequence number	3050

Table 4-5: Volume ID

Examples:

MEXMRS_3050 RORSI_3050 VEXVRA 3050

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 34 of 150

VEX-VRA-IGM-IS-3009

RSI Volume-ID:

The Radio Science Volume ID is a number which is incremented measurement by measurement, independent what kind of measurement was conducted. The RSI Volume ID is used within the DATA_SET_ID. The Radio Science Volume ID can be found in the logbook located in DOCUMENT/RSI_DOC.

VENUS EXPRESS Radio Science VeRa

Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 35 of 150

VEX-VRA-IGM-IS-3009

4.2.3.2 Volume Version ID

There can be several version of the same volume, if for example the archiving software changed during the archiving process or errors occurred during the initial production. This is indicated by the Volume Version ID, a string, which consists of a 'V' for Version followed by a sequence number indicating the revision number.

VV.V

Acronym	Description	Example
VV.V	Volume Version ID	V1.0

Table 4-6: Volume Version Id

If a volume is redone because of errors in the initial production or because of a change in the archiving software during the archiving process, the volume ID remains the same, and the Volume Version ID will be incremented.

4.2.3.3 Volume Name

The VOLUME NAME (formatted according to Table 4-7) contains the name of the physical data volume.

xxxxxx_zzzz_yyyy_ddd_vv.v

Acronym	Description	Example
XXXXXX	Missionhost and	MEXMRS
	Instrument ID	RORSI
		VEXVRA
ZZZZ	4-digit number of the ESA	3050
	PSA Volume-ID	
уууу	Year of the measurement	2008
ddd	Day of year of the	180
	measurement	
VV.V	Volume Version ID	V1.0

Table 4-7: Volume name definition

Examples:

MEXMRS_3050_2008_180_V1.0 RORSI_3050_2008_180_V1.0 VEXVRA_3050_2008_180_V1.0

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 36 of 150

VEX-VRA-IGM-IS-3009

4.2.4 Volume Set

A volume set consists of a number of volumes.

4.2.4.1 Volume Set ID

The VOLUME SET ID identifies a data volume or a set of volumes. Volume sets are considered as a single orderable entity. VOLUME SET ID shall be at most 60 characters in length, must be in upper case and separated by underscores. See Table 4-8 for more information.

XXX_YYYY_ZZZ_WWW_UVVV

Acronym	Description	Example
XXX	Abbreviation of the country of origin	GER USA
YYYY	The government branch	UNIK NASA
ZZZ	Discipline within branch	RIU (new, since 15.8.2007) IGM (old)
[W]	Mission and Instrument ID	MEXMRS RORSI VEXVRA
UVVV	A 4 digit sequence identifier The "U" digit is be used to represent the volume set Only MEX: U = 0 commissioning / cruise = 1 flybys = 2 prime missions = 3 extended missions the trailing "V"s are wildcards that represent the range of volumes in the set and are set to X as long as the number of volumes per set are not fixed For measurements taken after 1.1.2006 the first digit U represents the measurement type.	0099

Table 4-8: Volume Set ID

Examples:

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 37 of 150

VEX-VRA-IGM-IS-3009

GER_UNIK_IGM_MEXMRS_0099 USA_NASA_JPL_MEXMRS_0098

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 38 of 150

VEX-VRA-IGM-IS-3009

4.2.4.2 Volume Set Name

The VOLUME SET NAME provides the full, formal name of a group of data volumes containing a data set or a collection of related data sets. Volume set names shall be at most 60 characters in length and must be in upper case. Volume sets are considered as a single orderable entity. In certain cases, the volume set name can be the same as the volume name, such as when the volume set consists of only one volume.

Spacecraft	Example
Mars Express	MEX: RADIO SCIENCE OCCULTATION
	MEX: RADIO SCIENCE GLOBAL GRAVITY
	MEX: RADIO SCIENCE TARGET GRAVITY
	MEX: RADIO SCIENCE SOLAR CONJUNCTION
	MEX: RADIO SCIENCE PHOBOS FLYBY
	MEX: RADIO SCIENCE BISTATIC RADAR
Venus Express	VEX: RADIO SCIENCE OCCULTATION
	VEX: RADIO SCIENCE TARGET GRAVITY
	VEX: RADIO SCIENCE SOLAR CONJUNCTION
Rosetta	RO: RADIO SCIENCE COMMISSIONING

Table 4-9: Volume Set Name

Examples:

MEX: RADIO SCIENCE OCCULTATION MEX: RADIO SCIENCE GLOBAL GRAVITY

Both the VOLUME SET ID and the VOLUME SET NAME are printed on the CD-ROM or DVD label (Figure 4-2).

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 39 of 150

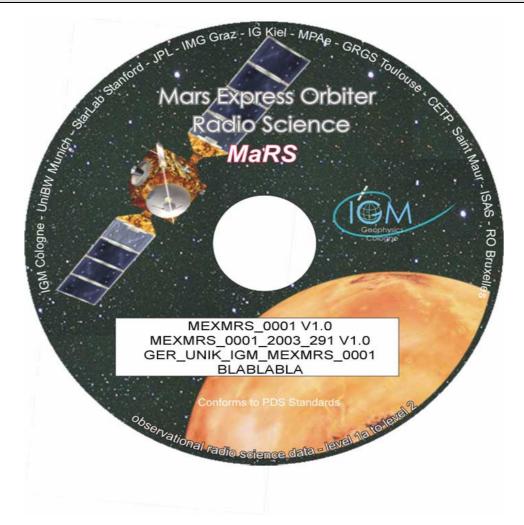


Figure 4-2: Example of a physical archive data volume (CD-ROM or DVD) with appropriate designations printed on the volume label sticker. On the sticker is printed: line 1: Volume_id + Volume_Version_ID, line 2: Volume_name, line 3: Volume_set_id, Line 4:Volume_set_name.

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 40 of 150

VEX-VRA-IGM-IS-3009

4.2.5 Volume Series

A volume series consists of one or more volume sets that represent data from one or more missions or campaigns.

4.2.5.1 Volume Series Name

The volume_series_name element provides a full, formal name that describes a broad categorization of data products or data sets related to a planetary body or a research campaign. See Table 4-10 for details.

Spacecraft	Example
Mars Express	MISSION TO MARS
Venus Express	MISSION TO VENUS
Rosetta	MISSION TO SMALL BODIES

Table 4-10: Volume Series Name

Examples:

MISSION TO MARS MISSION TO VENUS MISSION TO SMALL BODIES

VENUS EXPRESS Radio Science VeRa
Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 41 of 150

VEX-VRA-IGM-IS-3009

5 GENERAL FILE NAMING CONVENTION

5.1 FILE NAME FORMAT

All incoming data files will be renamed and all processed data files will be named after the following file naming convention format. The original file name of the incoming tracking data files will be stored in the according label file as source_product_id. See Table 5-1 for more information.

rggttttlll_sss_yydddhhmm_qq.eee

5.2 DATA FILES

Data files are:

- The DSN and IFMS radio tracking files from Level 1a to level 2
- The predicted and reconstructed Doppler and range files
- Geometry files

All Level 1a binary data files will have the extension eee = DAT. Level 1a to level 2 tabulated ASCII data files will have the extension eee = TAB with the exception of IFMS level 1a files which will have the extension eee = RAW.

5.3 DESCRIPTIVE FILES

Descriptive files contain information in order to support the processing and analysis of data files. The following file types are defined as descriptive files with extension eee =

- *.LBL PDS label files
- *.CFG IFMS configuration
- *.AUX Anxiliary files (event files, attitude files, ESOC orbit files, UniBw products, SPICE files)
- *.TXT Information (text) files
- *.LOG Log files (see section 7.2.2.3.2)

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 42 of 150

Acronym	Description	Examples
r	Spacecraft (Raumsonde) name	M
	R = Rosetta	
	M = Mars Express	
	V = Venus Express	
99	Ground station ID:	43
	00 = valid for all ground stations, various	
	ground stations or independent of ground	
	station or not feasible to appoint to a	
	specific ground station or complex	
	DSN complex 40 Canberra	
	34 = 34 m BWG	
	40 = complex	
	43 = 70 m	
	45 = 34 m HEF	
	ESA New Norcia antenna	
	32 = 35 m	
	ESA Cebreros antenna:	
	62 = 35 m	
	ESA Malargüe antenna:	
	84 = 35 m	
	DSN complex 10 Goldstone:	
	10 = complex	
	14 = 70 m	
	15 = 34 m HEF	
	24 = 34 m BWG	
	25 = 34 m BWG	
	26 = 34 m BWG	
	27 = 34 m HSBWG	
	ESA Kourou antenna	
	75 = 15 m	
	DSN complex 60 Madrid:	
	54 = 34 m BWG	
	55 = 34 m BWG	
	60 = complex	
	63 = 70 m	
****	65 = 34 m HEF	T) F0
tttt	data source identifier	TNF0
	Level 1a and 1b	
	ODF0 = ODF closed loop with sample rate	
	1/min	
	ODFX = ODF closed loop X-band file with	
	sample rate 1/sec.	
	ODFS = ODF closed loop S-band file with	
	sample rate 1/sec.	
	TNF0 = TNF closed-loop (L1a)	

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 43 of 150

	1	
	T000 – T017 = TNF closed-loop (L1b)	
	ICL1 = IFMS 1closed loop	
	ICL2 = IFMS 2 closed-loop	
	ICL3 = IFMS RS closed-loop	
	IOL3 = IFMS RS open loop	
	R1Az = RSR block 1A open loop	
	R1Bz = RSR block 1B open loop	
	R2Az = RSR block 2A open loop	
	R2Bz = RSR block 2B open loop	
	· · · · · · · · · · · · · · · · · · ·	
	R3Az = RSR block 3A open loop	
	R3Bz = RSR block 3B open loop	
	z = 14 subchannel number	
	ESOC = ancillary files from the ESOC DDS	
	DSN0 = ancillary files from the DSN	
	SUE0= ancillary and information files	
	coming from Stanford University	
	center for radar astronomy	
	Level 2	
	UNBW = predicted and reconstructed	
	Doppler & range orbit files	
	ICL1 = IFMS 1closed loop	
	•	
	ICL2 = IFMS 2 closed-loop	
	ICL3 = IFMS RS closed-loop	
	ODF0 = DSN ODF closed-loop file with	
	sample rate 1/min	
	ODFX = ODF closed loop X-band file with	
	sample rate 1/sec.	
	ODFS = ODF closed loop S-band file with	
	sample rate 1/sec.	
	T000 – T017 = DSN TNF closed-loop file	
	RSR0 = DSN RSR open-loop file	
	RSRC = DSN RSR open loop file containing	
	data with right circular polarization	
	(only solar conjunction	
	measurement)	
	RSLC = DSN RSR open loop file containing	
	data with left circular polarization	
	(only solar conjunction	
	, , , , , , , , , , , , , , , , , , ,	
	measurement)	
	NAIF = JPL or ESTEC SPICE kernels	
	SUE0= ancillary, information and calibration	
	files coming from Stanford	
	University center for radar	
	astronomy	
III	Data archiving level	L1a
	L1A = Level 1A	
	L1B = Level 1B	
	1	I

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 44 of 150

	1.02 - Lovel 2	
	L02 = Level 2 L03 = Level 3	
SSS	data type	
333	data type	
	IFMS Data files level 1A:	
	D1X uncalibrated Doppler 1 X-band	
	D1S uncalibrated Doppler 1 S-band	
	D2X uncalibrated Doppler 2 X-band	
	D2S uncalibrated Doppler 2 S-band	
	C1X Doppler 1 X-band equip. calibration	
	C1S Doppler 1 S-band equip. calibration	
	C2X Doppler 2 X-band equip. calibration	
	C2S Doppler 2 S-band equip. calibration	
	RGX uncalibrated X-band range	
	RGS uncalibrated S-band range	
	MET meteo	
	AG1 AGC 1	
	AG2 AGC 2	
	RCS S-band range equip. calibration	
	RCX X-band range equip. calibration	
	DSN data files level 1A:	
	ODF original orbit files (closed-loop)	
	RSR radio science receiver open-loop files	
	TNF TNF file (closed-loop)	
	DSN calibration files level 1A:	
	TRO DSN tropospheric calibration model	
	MET DSN meterological file	
	ION DSN ionospheric calibration model	
	BCL SUE Bistatic radar temperature	
	calibration	
	ESOC ancillary data, Level 1A:	
	ATR attitude file, reconstructed	
	EVT orbit event file	
	OHC orbit file, heliocentric, cruise	
	OMO orbit file, Marscentric, operational	
	DSN ancillary data, Level 1A:	
	DKF DSN Keyword File	
	MON DSN monitor data	
	NMC DSN Network Monitor and Control file	
	SOE DSN Sequence of Events	
	EOP DSN earth orientation parameter file	
	ENB SUE Experimenter Notebook	
	MFT SUE Manifest files	

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRa
Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 45 of 150

VEX-VRA-IGM-IS-3009

LIT DSN Light time file

HEA DSN Data collection list

OPT DSN Orbit and timing geometry file

DSN Browse plots level 1A

BRO Radio Science quick look 4-panel plot set (browse plots)

IFMS data files level 1B:

D1X uncalibrated Doppler 1 X-band

D1S uncalibrated Doppler 1 S-band

D2X uncalibrated Doppler 2 X-band

D2S uncalibrated Doppler 2 S-band

C1X Doppler 1 X-band equip.calibration

C1S Doppler 1 S-band equip.calibration

C2X Doppler 2 X-band equip.calibration

C2S Doppler 2 S-band equip.calibration

RGX uncalibrated X-band range

RGS uncalibrated S-band range

MET meteo

AG1 AGC 1

AG2 AGC 2

RCX X-band range equip. calibration

RCS S-band range equip. calibration

DSN ODF data files level 1B:

DPS S-band Doppler

DPX X-band Doppler

RGS uncalibrated S-band ranging file

RGX uncalibrated X-band ranging file

RMP uplink frequency ramp rate file

DSN calibration files level 1B:

MET meteorological file

IFMS data level 2:

D1X calibrated Doppler 1 X-band

D1S calibrated Doppler 1 S-band

D2X calibrated Doppler 2 X-band

D2S calibrated Doppler 2 S-band

RGS calibrated S-band ranging file

RGX calibrated X-band ranging file

RCS S-band range calibration file

RCX X-band range calibration file

IFMS Browse plots level 2

B1X Quick look plots of calibrated Doppler 1

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 46 of 150

VEX-VRA-IGM-IS-3009

X-band

B1S Quick look plots of calibrated Doppler 1

S-band

B2X Quick look plots of calibrated Doppler 2

X-band

B2S Quick look plots of calibrated Doppler 2

S-band

DSN level 2 data

DPX calibrated Doppler 1 X-band

DPS calibrated Doppler 1 S-band

RGS calibrated S-band ranging file

RGX calibrated X-band ranging file

BSR bistatic radar power spectra

SRG bistatic radar surface reflection

geometry file

DSN level 2 calibration files

SRF Surface Reflection Filter files

Orbit files level 2

PTW Doppler & range prediction two-way

PON Doppler & range prediction one-way

RTW reconstructed Doppler & range orbit

file two-way

RON reconstructed Doppler & range orbit

file one-way

LOC heliocentric state vector file

Constellation file Level 2:

MAR Mars constellation file

VEN Venus constellation file

P67 Churyumov-Gerasimenko

constellation file

SPICE kernel files level 2:

BSP binary spacecraft/location kernel file

FRM frame kernel file

ORB orbit numbering file

PBC predicted attitude kernel file

PCK planetary constant kernel

SCK spacecraft clock kernel

TLS leap second kernel file

Science data level 3:

SCP solar conjunction science

vv Year 04

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 47 of 150

VEX-VRA-IGM-IS-3009

ddd	Day of the year	153
hhmm	Sample hour , minute	1135
	(Start time or ESOC reference time tag) ²	
qq	Sequence or version number	01
eee	.DAT binary data files (Level 1a)	
	.TAB ASCII data files	
	.AUX ancillary files	
	.CFG IFMS configuration files (Level 1b)	
	.LBL PDS label files	
	.TXT information files	
	.RAW ASCII data files (Level 1a)	
	.LOG Processing log files (Level 2)	

Table 5-1: Data file naming convention

² Please note that this is the reference time tag for IFMS files. This is the time at which the first file of a sequence of files has started. For IFMS ranging files this does not coincide with the first sample time since ESOC starts the ranging files a two-way light time before the first true measurement.

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 48 of 150

VEX-VRA-IGM-IS-3009

page intentionally left free

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 49 of 150

VEX-VRA-IGM-IS-3009

6 RAW TRACKING DATA FILES (LEVEL 1A)

All incoming data files will be renamed and all processed data files will be named after the file naming convention format defined in section 5.1. The original file name of the incoming tracking data files will be stored in the according label file as original_product_id.

6.1 DEEP SPACE NETWORK TRACKING DATA

6.1.1 File names of incoming level 1a DSN raw data files

The file names of the incoming Deep Space Network (DSN) tracking data files level 1a are not specified:

Abbreviation	description
ODF	Closed-loop ODF level 1a file
TNF	Closed-loop Tracking Navigation File (TNF) Level 1a
RSR	Open-loop RSR level 1a file

6.1.2 File formats of incoming Level 1a DSN raw data files

6.1.2.1 ODF Level 1a

The structure of binary ODF is described in the NASA document

820-13, Rev B; TRK-2-18 ODF Orbit data File

and in the IGM documents

MEX-MRS-IGM-DS-3037
ROS-RSI-IGM-DS-3127
VEX-VRA-IGM-DS-5008
DSN ODF (Orbit Data File) Processing Software:
Level 1a to Level 1b
Software Design Specifications

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 50 of 150

VEX-VRA-IGM-IS-3009

6.1.2.2 RSR Level 1a

The RSR is a computer controlled open loop receiver that digitally records a spacecraft signal through the use of an analog to digital converter (ADC) and up to four digital filter sub-channels. The digital samples from each sub-channel are stored to disk at regular intervals in real time. In near real time the records are partitioned and formatted into a sequence of RSR SFDUs which are transmitted to JPL's Advanced Multi-Mission Operations System (AMMOS). Included in each RSR SFDU is the ancillary data necessary to reconstruct the signal represented by the recorded data samples in that SFDU.

The structure of RSR's is described in the NASA document

JPL_D-16765_RSR.PDF Radio Science Receiver Standard Formatted Data Unit (SFDU)

And in the IGM documents

ROS-RSI-IGM-MA-3113-RSR-Read-Program-Manual MEX-MRS-IGM-MA-3026 RSR-Read-Program-Manual

The physical layout of the RSR SFDU is divided into five sections: the SFDU label, the header aggregation CHDO label, the primary header CHDO, the secondary header CHDO, and the data CHDO. The primary header CHDO and the secondary header CHDO together constitute the value field of the header aggregation CHDO; the header aggregation CHDO and the data CHDO together constitute the value field of the RSR SFDU.

The length of the RSR SFDU (in 8-bit bytes) is designated as N in this module. In general, the length of all items in the RSR SFDU are fixed, except for the data CHDO. The length of the data CHDO is variable and is determined by the sample rate and sample size of the recorded data. The length of the data CHDO is designated as M in this module. In any case, the total length of the RSR SFDU is easily ascertained from the length attribute in the SFDU label (total SFDU length N = SFDU length attribute + 20).

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRa
Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 51 of 150

VEX-VRA-IGM-IS-3009

6.1.2.3 Incoming calibration files from the DSN

6.1.2.3.1 DSN meteorological calibration file

The file name and format of the DSN meteo calibration file is described in section 10.2.1.

6.1.2.3.2 DSN tropospheric calibration model file

The DSN tropospheric calibration file describes a model of the Earth troposphere at the antenna site. The file name and format is described in section 10.2.3

6.1.2.3.3 DSN ionospheric calibration model file

The DSN tropospheric calibration file describes a model of the Earth ionosphere at the antenna site. The file name and format is described in section 10.2.4

6.1.2.4 Incoming ancillary files from the DSN

6.1.2.4.1 DSN monitor files

The file name and format of the DSN monitor file is described in section 8.5

6.1.2.4.2 DSN Network Monitor and Control files

The file name and format of the DSN Network Monitoring Control file is described in section 8.6

6.1.2.4.3 DSN Sequence of Events file

The file name and format of the DSN Sequence of Events file is described in section 8.7

6.1.2.4.4 SPICE kernels

The file name and formats of the SPICE kernel files is described in section 11.

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 52 of 150

VEX-VRA-IGM-IS-3009

6.1.2.5 RSR Level 1a Browse Data Plots

In order to check data quality of RSR Level 1a open-loop data, Stanford University is producing a 4-panel plot. These plots are Postscript files. These plots are also available as JPG files.

The source identifier *tttt* is set according to the relevant RSR receiver channel and subchannel (see Table 5-1), the data level *III=L1A* and the data type identifier is *sss=BRO* for browse data.

for Postscript files:
rggttttL1A_BRO_yydddhhmm_00.AUX
for JPG files:
rggttttL1A_BRO_yydddhhmm_00.JPG

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 53 of 150

VEX-VRA-IGM-IS-3009

6.2 ESA STATIONS (LEVEL 1A)

6.2.1 File names of incoming Level 1a IFMS files

6.2.1.1 IFMS Level 1a incoming raw data files

6.2.1.1.1 IFMS raw data file name format

The nominal length of a filename of the IFMS is 31 characters, and increases only in the case that more than 9999 sequence IDs are needed, or in the case of raw (uncorrected) ranging data (more information in the referenced document IFMS_OCCFTP.PDF). In that case, the IFMS expands the sequence IDs length, or add a filename extension, as needed. Level 1a files will be renamed according to the file name format defined in section 5.1.

gggg_ssss_ddd_ii_tt_hhmmss_kkkk

Acronym	Description	Example
9999	Ground station ID	NN11
	NN = New Norcia	
	NN11 = IFMS-1	
	NN12 = IFMS-2	
	NN13 = IFMS-RS	
	CB = Cebreros	
	CB11 = IFMS1	
	CB12 = IFMS2	
	CB13 = IFMS3	
	MG = Malargüe	
	MG11 = IFMS1	
	MG12 = IFMS2	
	MG13 = IFMS3	
SSSS	Spacecraft ID	MEX1
	MEX1 = Mars Express	
	ROSE = Rosetta	
ddd	Day of year	108
ii	Data kind identifier	OP
	OP = operational	
	TS = test	
	CL = calibration (range)	
	RO = radio science (old)	
tt	Type of Data	
	D1 = Doppler 1	
	D2 = Doppler 2	
	ME = Meteo	
	RG = Ranging	
	G1 = AGC 1	

VENUS EXPRESS Radio Science VeRa
Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 54 of 150

VEX-VRA-IGM-IS-3009

	G2 = AGC 2		
hhmmss	hh = hours		145513
	mm = minutes		
	ss = seconds		
kkkk	Data-set	sequence	0001
	identification	- -	

Table 6-1: File name convention for Raw IFMS-files

6.2.1.1.2 IFMS raw data file format

The structure of the IFMS tracking data files are described in the ESA document

IFMS_OCCFTP.PDF
Issue/Revision No: 10.5.0
IFMS-to-OCC
Interface Control Document

6.2.1.1.3 Level 1a file name format

Since the IFMS raw data file names are not PDS compliant, a new file name is created and is formatted according to section 5.1 with the data archiving level set to III = L1a. It replaces the original file name which is stored in the accompanying PDS label file. The extension is set to eee = TAB (see also 7.2.1.3.1). The file content remains unchanged.

6.2.1.2 Incoming ancillary files from ESOC DDS

6.2.1.2.1 ESOC DDS file name convention

6.2.1.2.1.1 Conventions

The following conventions have been adopted in the rest of this document:

- 1. RMx is used where a file can be sent to either RMA or RMB
- 2. MMx is used where a file can be sent to either MMA or MMB
- 3. FDx is used where a file can be sent to either FDL or FDR

The incoming ESOC ancillary data file names follow the following format:

ffff_sssddd_Dwxyymmddhhmmss_vvvvv.eee

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 55 of 150

Placeholder	description
ffff	File type identifier
	ORHM = orbit file heliocentric Mars Express
	ORMM = orbit file marscentric Mars Express
	ORMF = orbit file marscentric frozen orbit
	ORHR = orbit file heliocentric Rosetta
	ATNM = attitude file nominal Mars Express
	ATNR = attitude file nominal Rosetta
	EVTM = event file Mars Express
	EVTF = event file frozen orbit (Mars Express)
	VILM = visibility file Lander Mars Express
	OASW = orbit and attitude data access software
SSS	Data source identifier
	FDx = ESOC Flight Dynamics
	PST = ESTEC Project Science Team Mars Express (for SPICE
	files)
ddd	Data destination identifier
	MMx = Mars Express Mission System (DDS)
_	PIX = PI Teams (for SPICE files from PST)
D	Data file
W	format identifier
	B = binary data
	A = ASCII data
x	Data type identifier
	_ = (underscore) orbit data
	P = predicted attitude data
	R = reconstructed attitude data
yymmddhhmmss	Start time of data in file
	Except for orbit files where the time stamp is replaced by
	Twelve (12) underscores
vvvv	Version number
eee	Extension
	MEX = Mars Express

Table 6-2: ESOC ancillary data file names

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 56 of 150

VEX-VRA-IGM-IS-3009

6.2.1.2.2 S/C attitude file, reconstructed

The reconstructed spacecraft attitude file for a specified time interval is described in section 8.3.1.

6.2.1.2.3 Orbit event file

An ASCII file containing information about events will be provided. For each event one line of information is given. The events occur in ascending order in time. The highest version number represents the most recent issue of that file. The file name and file format is described in section 8.3.2.

6.2.1.2.4 S/C orbit file during cruise, heliocentric

The spacecraft cruise orbit file is described in section 9.3

6.2.1.2.5 S/C orbit file during mission, Marscentric

The spacecraft Marscentric orbit file is described in section 9.4

6.2.1.2.6 SPICE kernels

The file name and formats of the SPICE kernel files is described in section 11.

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 57 of 150

VEX-VRA-IGM-IS-3009

7 PROCESSED TRACKING DATA (LEVEL 1B AND 2)

7.1 DEEP SPACE NETWORK

7.1.1 Closed-loop ODF Level 1b products

7.1.1.1 Specifications Document

The processing of ODF Level 1a to Level 1b products is specified in the IGM documents

MEX-MRS-IGM-DS-3037 ROS-RSI-IGM-DS-3127 VEX-VRA-IGM-DS-5008 DSN ODF (Orbit Data File) Processing Software: Level 1a to Level 1b Software Design Specifications

7.1.1.2 Input file

The input files for the processing software are:

• The ODF level 1a file

7.1.1.2.1 ODF level 1a file

The original ODF files have file names and formats according to section 6.1.1 and 6.1.2..

VENUS EXPRESS Radio Science VeRa
Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 58 of 150

VEX-VRA-IGM-IS-3009

7.1.1.3 Output Level 1b products

7.1.1.3.1 File name formats

A new file name is created and is formatted according to section 5.1 with the data archiving level set to III = L1A. It replaces the original file name which is stored in the accompanying label file. The extension is set to eee = TAB.

A DSN ODF file contains usually data covering several days and from different ground stations. Therefore, a general apointement to a specific ground station cannot be done and gg=00.

The processed data file names of level 1b are formatted according section 5.1 with the archiving level set to III = L1b and eee = TAB.

The sequence number qq is not used for all DSN file types of level 1a and level 1b and is set qq = 00.

- For the Doppler data sss = DPS or DPX
- For the range data sss = RGS or RGX
- For the uplink frequency ramp rate data sss = RMP
- For the modified meteorological file sss = MET

New level 1a file name:

r00ODF0L1A sss yydddhhmm 00.DAT

Level 1b file name:

r00ODF0L1B sss yydddhhmm 00.TAB

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 59 of 150

VEX-VRA-IGM-IS-3009

7.1.1.3.2 Data file formats for Level 1b ODF files

7.1.1.3.2.1 File format of S-band Doppler

Column	Format	Description	Unit	Resolution
1		Sample number		
2		Time in ISO format		
3		Time in fractions of day of year	Days	10 ⁻¹⁰
4		Ephemeris time since 01.01.2000	Sec	μsec
5	12	Spacecraft ID		
6	12	DSN station ID		
7	l1	1 = One-way		
		2 = two-way		
8	l1	Uplink frequency flag		
		0 = one-way		
		1 = S-band		
		2 = X-band		
		3 = Ka-band		
9	l1	Downlink frequency flag		
		1 = S-band		
		2 = X-band		
		3 = Ka-band		
10	l1	Data validity indicator		
		0 = data invalid		
		1 = data valid		
11		Observed S-band Doppler	Hz	nHz

Table 7-1: File format of S-band Level 1b Doppler file

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 60 of 150

VEX-VRA-IGM-IS-3009

7.1.1.3.2.2 File format of X-band Doppler

Column	Format	Description	Unit	Resolution
1		Sample number		
2		Time in ISO format		
3		Time in fractions of day of year	Days	10 ⁻⁹
4		Ephemeris time since 01.01.2000	Sec	μsec
5	12	Spacecraft ID		
6	12	DSN station ID		
7	I1	1 = One-way		
		2 = two-way		
8	l1	Uplink frequency flag		
		0 = one-way		
		1 = S-band		
		2 = X-band		
		3 = Ka-band		
9	l1	Downlink frequency flag		
		1 = S-band		
		2 = X-band		
		3 = Ka-band		
10	l1	Data validity indicator		
		0 = data invalid		
		1 = data valid		
11		Observed X-band Doppler	Hz	nHz

Table 7-2: File format of Level 1b X-band Doppler

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 61 of 150

VEX-VRA-IGM-IS-3009

7.1.1.3.2.3 File format of S-band ranging

Column	Format	Description	Unit	Resolution
1		Sample number		
2		Time in ISO format		
3		Time in fractions of day of year	Days	10 ⁻⁹
4		Ephemeris time since 01.01.2000	Sec	μsec
5	12	Spacecraft ID		
6	12	DSN station ID		
7	l1	1 = One-way		
		2 = two-way		
8	l1	Uplink frequency flag		
		0 = one-way		
		1 = S-band		
		2 = X-band		
		3 = Ka-band		
9	l1	Downlink frequency flag		
		1 = S-band		
		2 = X-band		
		3 = Ka-band		
10	l1	Data validity indicator		
		0 = data invalid		
		1 = data valid		
11	12	Data type (item 10)		
12		Observed S-band range	Range units	
			or	
			nsec	
13		Item 18 plus item 19		
14		Item 20		
15		Item 21		
16		Item 22		

Table 7-3: File format of Level 1b S-band ranging

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 62 of 150

VEX-VRA-IGM-IS-3009

7.1.1.3.2.4 File format of X-band ranging

Column	Format	Description	Unit	Resolution
1		Sample number		
2		Time in ISO format		
3		Time in fractions of day of year	Days	10 ⁻⁹
4		Ephemeris time since 01.01.2000	Sec	μsec
5	12	Spacecraft ID		
6	12	DSN station ID		
7	l1	1 = One-way		
		2 = two-way		
8	11	Uplink frequency flag		
		0 = one-way		
		1 = S-band		
		2 = X-band		
		3 = Ka-band		
9	l1	Downlink frequency flag		
		1 = S-band		
		2 = X-band		
		3 = Ka-band		
10	l1	Data validity indicator		
		0 = data invalid		
		1 = data valid		
11	12	Data type (item 10)		
12		Observed X-band range	Range units	
			or	
			nsec	
13		Item 18 plus item 19		
14		Item 20		
15		Item 21		
16		Item 22		

Table 7-4: File format of level 1b X-band ranging

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 63 of 150

VEX-VRA-IGM-IS-3009

7.1.1.3.2.5 File format of the uplink ramp rate file

Column	Format	Description	Unit	Resolution
1		Sample number		
2		Ramp start time		
		Time in ISO format		
3		Ramp start time	Day	10 ⁻⁹
		Time in fractions of day of year		
4		Ramp start time	second	μsec
		Ephemeris time since 01.01.2000		
5		Ramp stop time		
		Time in ISO format		
6		Ramp stop time	Day	10 ⁻⁹
		Time in fractions of day of year		
7		Ramp stop time	second	μsec
		Ephemeris time since 01.01.2000		
8		DSN Station ID		
9		Ramp Rate	Hertz/s	10 ⁻⁶ Hz/s
10		Ramp Start Frequency	Hertz	10 ⁻⁶ Hz

Table 7-5: File format of uplink ramp rate file

VENUS EXPRESS Radio Science VeRa
Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 64 of 150

VEX-VRA-IGM-IS-3009

7.1.2 Closed-loop ODF Level 2 products

7.1.2.1 Specifications document

The processing of the ODF Level 1b to Level 2 data is specified in the IGM document

MEX-MRS-IGM-DS-3038
ROS-RSI-IGM-DS-3128
VEX-VRA-IGM-DS-5009
DSN ODF (Orbit Data File) Calibration Software:
Doppler Level 1b to Level 2
Software Design Specifications

MEX-MRS-IGM-DS-3043
ROS-RSI-IGM-DS-3129
VEX-VRA-IGM-DS-5010
DSN ODF (Orbit Data File) Calibration Software:
Ranging Level 1b to Level 2
Software Design Specifications

7.1.2.2 Input file

The input files are:

- The ODF level 1b files
- The Doppler and range prediction file (PTW or PON) Or
- The Orbit reconstructed file (RTW or RON)
- Media calibration files

7.1.2.2.1 The orbit prediction file PTW or PON

The content and format of the predict file is described in section 9.1.

7.1.2.2.2 The orbit reconstructed file RTW or RON

The content and format of the reconstructed orbit file is described in section 9.2.

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 65 of 150

VEX-VRA-IGM-IS-3009

7.1.2.3 ODF Level 2 products

7.1.2.3.1 ODF file name formats Level 2

The file names of the ODF output level 2 files are formatted according to section 5.1 with the archiving level identifier set to III = L02 and the file type set to sss = DPX or DPS for X-band or S-band Doppler, respectively, or sss = RGX or RGS for calibrated X-band or S-band ranging files, respectively. The data source identifier is ttt = ODF0

rggODF0L02_sss_yydddhhmm_00.TAB

7.1.2.3.2 ODF file formats Level 2

7.1.2.3.2.1 Calibrated Doppler files DPX and DPS

The calibrated Doppler files contain observed IFMS Doppler expressed as X-band Doppler or S-band Doppler, residual and detrended X-band or S-band Doppler (computed using the predict file), the detrended differential Doppler. If only one single frequency was used, the differential Doppler will be set to zero. The formats are shown in Table 7-6 and Table 7-7.

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 66 of 150

column	description	unit	resolution
1	Sample number		
2	Ground received time as UTC in ISO format		
3	Ground received time as UTC in fractions of day of year starting with the first day of the year the data was recorded at 00:00.000	day	10 ⁻¹⁰ day
4	Ground received time as elapsed terrestrial barycentric dynamic time (TDB) time since noon of the first calendar day of year 2000 (12:00 1 January 2000 TDB)	second	10 ⁻⁶ sec
5	Distance <u>Propagation experiments:</u> approximate value of the closest approach of a downlink geometric ray path to the center of the reference body (Sun, planet, minor object). When two-way, the value is approximate average of uplink and downlink rays <u>Gravity observations:</u> geometric distance of the s/c from the center of mass of referenced body	kilometer	10 ⁻³ m
6	Transmit frequency ramp reference time UTC in ISO format The time (t0) at which the transmitted frequency would have been f_0 using the coefficients f_0 (column 7) and df (column 8). At any time t within the interval when those coefficients are valid, the transmitted frequency f_t may be calculated from $f_t = f_0 + df \cdot (t - t_0)$ For DSN two-way measurements: $f_t \text{is the uplink frequency of the ground transmitter; the } f_t \text{ photon will reach the receiver one RTLT later.}$ For DSN one-way measurements: $f_t \text{is the downlink frequency of the spacecraft transmitter; the } f_t \text{ photon will reach the receiver OWLT later. In both cases, } f_0 \text{and df may change; but } f_t \text{is always continuous, and changes in the coefficients occur only on integer seconds.}$ For IFMS measurements: $f_t = f_0$ because $df = 0$.		
7	Transmit frequency corresponding to time in	Hertz	10 ⁻⁶ Hz

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 67 of 150

	1 0		
	column 6		
	Two-way coherent modes:		
	Uplink frequency of ground station S-band order of 2100 MHZ		
	X-band order of 7100 MHz		
	One-way mode:		
	S/C transmission frequency		
	X-band order of 8400 MHz		
	S-band order of 2300 MHz		
8	Uplink frequency ramp rate	Hertz/sec	10 ⁻⁶ Hz/sec
	DSN two-way coherent:		
	Time derivative of uplink frequency in column 7		
	DSN one-way downlink mode:		
	Value of spacecraft frequency drift, if known		
	and/or meaningful; -99999.999999		
	IFMS measurements:		
	Ramp rate is always zero; df=0		
9	Observed X-band antenna frequency	Hertz	10 ⁻⁶ Hz
	Frequency of the signal at the terminals of the		
	receiving antenna structure at UTC TIME		
	columns 2 to 4 (t _r). Set to -9999999999999999999999999999999999		
	for missing or corrupted data.		
10	Predicted X-band antenna frequency	Hertz	10 ⁻⁶ Hz
	Based on the ESOC reconstructed orbit file or	1.0.4	
	SPICE kernels		
	Expected frequency of the signal at the terminals		
	of the receiving antenna structure at UTC TIME		
	in columns 2 to 4 (t_r). The calculation includes		
	geometrical effects (relative positions and		
	motions of ground station and spacecraft,		
	adjustments), tuning of both the transmitter and		
	receiver and a model-based correction for one-		
	or two-way (as appropriate) propagation through		
4.4	the Earth's atmosphere.		40-611
11	Correction of Earth atmosphere propagation	Hertz	10 ⁻⁶ Hz
	Correction term for the propagation of the signal		
	in the Earth atmosphere, based on		
	meteorological data observed at the ground		
	station site (MET-files)		
12	Residual calibrated X-band frequency shift	Hertz	10 ⁻⁶ Hz
	column 9 minus 10		
13	Received signal level	dBm / dB	0.1 dB
	Closed-loop data:		
	Signal level from AGC in decibels relative		
	to one milliwatt (dBm).		
	Open-loop (RSR):		
-	· · · · -		

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 68 of 150

	Signal level in decibels (dB) relative to an arbitrary reference.		
14	Differential Doppler $f_{S} - \frac{3}{11}f_{X}$ Where f_{S} and f_{X} are the received S-band and X-band frequencies If BAND_NAME = X (from the label file), f_{X} comes from column 9 in this table and f_{S} comes from column 9 in the file identified by SOURCE_ID (from the label file). If BAND_NAME = S (from the label file), f_{S} comes from column 9 in this table and f_{X} comes from column 9 in the file identified by SOURCE_ID (from the label file). if either band is not available, this column is set "-99999.999"	Hertz	10 ⁻⁶ Hz
15	standard deviation of the observed antenna frequency X-band in column 9 (open-loop only) for closed-loop this value is set "-99999.999"	Hertz	10 ⁻⁶ Hz
16	Received X-band signal quality (open-loop only) Ratio of observed received signal strength to the statistical standard deviation of the measurement, column 15 devided by column 19 For closed-loop this is value is set "-999.9"	dB	0.1 dB
17	standard deviation of received signal level at X-band (open-loop) A statistical measure of the error in determining SIGNAL LEVEL (column 15) based on fit of a data spectrum to a sinc function. Uses the same arbitrary scale factor as column 15; units of dB. for closed-loop this is set "-999.9"	dB	0.1 dB

Table 7-6: Format of the level 2 X-band Doppler file.

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 69 of 150

column	description	unit	resolution
1	Sample number		
2	Ground received time as UTC in ISO format		
3	Ground received time as UTC in fractions of day of year starting with the first day of the year the data was recorded at 00:00.000	day	10 ⁻¹⁰ day
4	Ground received time as elapsed terrestrial barycentric dynamic time (TDB) time since noon of the first calendar day of year 2000 (12:00 1 January 2000 TDB)	second	10 ⁻⁶ sec
5	Distance <u>Propagation experiments:</u> approximate value of the closest approach of a downlink geometric ray path to the center of the reference body (Sun, planet, minor object). When two-way, the value is approximate average of uplink and downlink rays <u>Gravity observations:</u> geometric distance of the s/c from the center of mass of referenced body	kilometer	10 ⁻³ m
6	Transmit frequency ramp reference time UTC in ISO format The time (t0) at which the transmitted frequency would have been f_0 using the coefficients f_0 (column 7) and df (column 8). At any time t within the interval when those coefficients are valid, the transmitted frequency f_t may be calculated from $f_t = f_0 + df \cdot (t - t_0)$ For DSN two-way measurements: $f_t \text{is the uplink frequency of the ground transmitter; the } f_t \text{ photon will reach the receiver one RTLT later.}$ For DSN one-way measurements: $f_t \text{is the downlink frequency of the spacecraft transmitter; the } f_t \text{ photon will reach the receiver OWLT later. In both cases, } f_0 \text{ and df may change; but } f_t \text{ is always continuous, and changes in the coefficients occur only on integer seconds.}$ For IFMS measurements: $f_t = f_0$ because $df = 0$.		
7	Transmitted frequency corresponding to time in	Hertz	10 ⁻⁶ Hz

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 70 of 150

	a ali uma m		
	column 6 <u>Two-way coherent modes:</u> Uplink frequency of ground station S-band order of 2100 MHZ		
	X-band order of 2100 MHz		
	One-way mode:		
	S/C transmission frequency		
	X-band order of 8400 MHz		
8	S-band order of 2300 MHz Uplink frequency ramp rate	Hertz/sec	10 ⁻⁶ Hz/sec
0	DSN two-way coherent:	110112/300	10 112/560
	Time derivative of uplink frequency in column 7		
	DSN one-way downlink mode:		
	Value of spacecraft frequency drift, if known		
	and/or meaningful; -99999.999999		
	<u>IFMS measurements:</u> Ramp rate is always zero; df=0		
9	Observed S-band antenna frequency	Hertz	10 ⁻⁶ Hz
	Frequency of the signal at the terminals of the		-
	receiving antenna structure at UTC TIME		
	columns 2 to 4 (t _r). Set to -9999999999999999999999999999999999		
10	for missing or corrupted data.	Hertz	10 ⁻⁶ Hz
10	Predicted S-band antenna frequency Based on the ESOC reconstructed orbit file or	Hertz	10 円2
	SPICE kernels		
	Expected frequency of the signal at the terminals		
	of the receiving antenna structure at UTC TIME		
	in columns 2 to 4 (t_r) . The calculation includes		
	geometrical effects (relative positions and		
	motions of ground station and spacecraft, including Earth rotation and light time		
	adjustments), tuning of both the transmitter and		
	receiver and a model-based correction for one-		
	or two-way (as appropriate) propagation through		
	the Earth's atmosphere.		6
11	Correction of Earth atmosphere propagation	Hertz	10 ⁻⁶ Hz
	Correction term for the propagation of the signal in the Earth atmosphere and ionosphere, based		
	on meteorological data observed at the ground		
	station site (MET-files)		
12	Residual calibrated X-band frequency shift	Hertz	10 ⁻⁶ Hz
	column 9 minus 10		, <u>-</u>
13	Received S-band signal level	dBm / dB	0.1 dB
	Closed-loop data:		
	Signal level from AGC in decibels relative		

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 71 of 150

VEX-VRA-IGM-IS-3009

	to one milliwatt (dBm). <u>Open-loop (RSR):</u> Signal level in decibels (dB) relative to an arbitrary reference.		
14	Differential Doppler $f_{\rm S} - \frac{3}{11} f_{\rm X}$	Hertz	10 ⁻⁶ Hz
	Where f_S and f_X are the received S-band and X-band frequencies If BAND_NAME = X (from the label file), f_X comes from column 9 in this table and f_S comes from column 9 in the file identified by SOURCE_ID (from the label file).		
	If BAND_NAME = S (from the label file), f_S comes from column 9 in this table and f_X comes from column 9 in the file identified by SOURCE_ID (from the label file). if either band is not available, this column is set "-99999.999"		
15	standard deviation of the observed antenna frequency S-band in column 9 (open-loop only) for closed-loop this value is set "-99999.999"	Hertz	10 ⁻⁶ Hz
16	Received S-band signal quality (open-loop only) Ratio of observed received signal strength to the statistical standard deviation of the measurement, column 15 devided by column 19 For closed-loop this is value is set "-999.9"	dB	0.1 dB
17	standard deviation of received signal level at S-band (open-loop) A statistical measure of the error in determining SIGNAL LEVEL (column 15) based on fit of a data spectrum to a sinc function. Uses the same arbitrary scale factor as column 15; units of dB. for closed-loop this is set "-999.9"	dB	0.1 dB

Table 7-7: format of the level 2 S-band Doppler file.

7.1.2.3.2.2 Calibrated ranging files RGX and RGS

The level 2 ranging file contains the observed TWLT at X-band or S-band, the calibrated TWLT at X-band or S-band, the TWLT delay at X-band or S-band and the differential TWLT. If only one frequency was used, the differential TWLT is set to -99999.9. The formats are shown in Table 7-8 and Table 7-9.

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 72 of 150

column	description	unit	resolution
1	Sample number		
2	Ground received time		
	as UTC in ISO format		
3	Ground received time	day	10 ⁻¹⁰ day
	as UTC in fractions of day of year	_	
	starting with the first day of the year the		
	data was recorded at 00:00.000		
4	Ground received time	second	10 ⁻⁶ sec
	as elapsed terrestrial barycentric		
	dynamic time (TDB) time since noon of		
	the first calendar day of year 2000		
	(12:00 1 January 2000 TDB)		
5	Distance	kilometer	10 ⁻³ m
	<u>Propagation experiments:</u> approximate		
	value of the closest approach of a		
	downlink geometric ray path to the		
	center of the reference body (Sun,		
	planet, minor object). When two-way,		
	the value is approximate average of		
	uplink and downlink rays		
	<u>Gravity observations:</u> geometric distance of the s/c from the center of		
6	Mass of referenced body Observed TWLT X-band	second	0.1 nsec
7	calibrated TWLT X-band	second	0.1 nsec
<i>'</i>	corrected for the propagation in the	Second	0.111560
	Earth atmosphere, ionospshere and		
	interplanetary plasma propagation		
8	TWLT delay X-band	second	0.1 nsec
	Signal Round-Trip delay, modulo the	0000114	0.111000
	maximum code ambiguity		
9	Differential TWLT	second	0.1 nsec
	Computed from the S-band and X-band		
	calibrated range in column 6		
	$ au_{S} - au_{X}$		
	If neither S-band or X-band is available		
	the value is set to -99999.9		
10	X-band Range Calibration G/S	second	0.1 nsec
	Equipment Delay	-	
11	X-band Range predict	second	0.1 nsec
12	X-band Range residual	second	0.1 nsec
13	X-band AGC Carrier level	DBM	0.1 DBM

Table 7-8: format of the level 2 X-band calibrated ranging file

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 73 of 150

VEX-VRA-IGM-IS-3009

column	description	unit	resolution
1	Sample number		
2	Ground received time as UTC in ISO format		
3	Ground received time as UTC in fractions of day of year starting with the first day of the year the data was recorded at 00:00.000	day	10 ⁻¹⁰ day
4	Ground received time as elapsed terrestrial barycentric dynamic time (TDB) time since noon of the first calendar day of year 2000 (12:00 1 January 2000 TDB)		10 ⁻⁶ sec
5	Distance <u>Propagation experiments:</u> approximate value of the closest approach of a downlink geometric ray path to the center of the reference body (Sun, planet, minor object). When two-way, the value is approximate average of uplink and downlink rays <u>Gravity observations:</u> geometric distance of the s/c from the center of mass of referenced body		10 ⁻³ m
6	Observed TWLT S-band	second	0.1 nsec
7	calibrated TWLT S-band corrected for the propagation in the Earth atmosphere, ionospshere and interplanetary plasma propagation	second	0.1 nsec
8	TWLT delay S-band Signal Round-Trip delay, modulo the maximum code ambiguity	second	0.1 nsec
9	Differential TWLT Computed from the S-band and X-band calibrated range in column 6 $\tau_{\rm S}-\tau_{\rm X}$ If neither S-band or X-band is available the value is set to -99999.9	second	0.1 nsec
10	S-band Range Calibration G/S Equipment Delay	second	0.1 nsec
11	S-band Range predict	second	0.1 nsec
12	S-band Range residual	second	0.1 nsec
13	S-band AGC Carrier level	DBM	0.1 DBM

Table 7-9: format of the level 2 S-band calibrated ranging file

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 74 of 150

VEX-VRA-IGM-IS-3009

7.1.3 Open-loop RSR Level 2

7.1.3.1 Specification Document

tbd

7.1.3.2 Open-loop RSR Level 2 products

7.1.3.2.1 Open-loop Doppler file products Level 2

7.1.3.2.1.1 Open-loop Doppler File name format

The file names of the Doppler RSR level 2 products are formatted according to section 4.1 with the archiving level identifier set to III = L02 and the file type set to sss = DPS or DPX. The data source identifier is set to tttt = RSR0 for Occulation measurements and tttt = RSRC or tttt = RSLC for right circular polarized or left circular polarized solar conjunction measurements.

for occultation measurments

rggRSR0L02_sss_yydddhhmm_00.TAB
for solar conjunction measurements:

rggRSRCL02_sss_yydddhhmm_00.TAB
and

rggRSLCL02_sss_yydddhhmm_00.TAB

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 75 of 150

VEX-VRA-IGM-IS-3009

7.1.3.2.1.2 Open-loop Doppler File formats

See Table 7-6 and Table 7-7.

VENUS EXPRESS Radio Science VeRa
Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 76 of 150

VEX-VRA-IGM-IS-3009

7.1.3.2.2 Bistatic Radar products

7.1.3.2.2.1 File name format

The file names of the bistatic radar RSR level 2 products are formatted according to section 5.1 with the archiving level identifier set to III = L02 and the file type set to sss = BSR or SRG, for the power spectra and the surface reflection geometry file, respectively. The data source identifier is tttt = RSR0.

Bistatic Radar power spectra:

rggRSR0L02_BSR_yydddhhmm_00.TAB

The associated surface reflection geometry file:

rggRSR0L02_SRG_yydddhhmm_00.TAB

7.1.3.2.2.2 Bistatic Radar products level 2: Power Spectra

The BSR spectra contain as a function of spectral frequency the power of the right-handed circular polarized (RCP) and the left-handed circular polarized (LCP) signals at X-band and S-band, and the real and imaginary components of the RCP and LCP cross spectra again at both frequency bands.

If the polarization information for a frequency band is not available, then the respective columns contain zeros.

Column	Description	Unit	Resolution/ format
1	Spectrum number		13
2	Center time of spectrum	spm	microseconds
3	Number of sample in spectrum		15
4	Spectral frequency	Hz	
5	X-band RCP power	W	1x,E12.5
6	X-band LCP power	W	1x,E12.5
7	S-band RCP power	W	1x,E12.5
8	S-band LCP power	W	1x,E12.5
9	X-band RCP/LCP cross spectral power real component	W	1x,E12.5
10	X-band RCP/LCP cross spectral power imaginary component	W	1x,E12.5
11	S-band RCP/LCP cross spectral power real component	V	1x,E12.5
12	S-band RCP/LCP cross spectral power imaginary component	W	1x,E12.5

Table 7-10: BSR spectra file format

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 77 of 150

VEX-VRA-IGM-IS-3009

7.1.3.2.2.3 <u>Bistatic Radar products level 2: Surface Reflection Geometry (SRG) File</u>

Please refer to the document SRX.TXT in the folder DOCUMENT/DSN_DOC, which is available for a Bistatic Radar measurement.

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 78 of 150

VEX-VRA-IGM-IS-3009

7.2 ESA STATIONS (LEVEL 1B AND LEVEL 2)

7.2.1 Closed-loop IFMS level 1b products

7.2.1.1 Specifications document

The processing of the IFMS Level 1a to Level 1b data is specified in the document

MEX-MRS-IGM-MA-3017 Issue 1.0 IFMS-Read-Program User Manual

7.2.1.2 Input files

The input files are:

• The incoming IFMS level 1a files

7.2.1.2.1 <u>IFMS level 1a files</u>

The original IFMS files have file names and formats according to section 6.2.1.

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 79 of 150

VEX-VRA-IGM-IS-3009

7.2.1.3 Output IFMS Level 1b products

7.2.1.3.1 File name formats

Since the incoming raw IFMS files are not PDS compliant, for each file a new file name is created and is formatted according to section 5.1 with the data archiving level set to III = L1A and file ending set to .eee = .RAW. It replaces the original file name which is stored in the accompanying label file. The data source identifier is set to tttt = ICL1, ICL2, ICL3 or IOL3.

New level 1a file name:

rggttttL1A_sss_yydddhhmm_qq.RAW

PDS label file names level 1a:

rggttttL1A_sss_yydddhhmm_qq.LBL

The processed data file names of level 1b are formatted according section 5.1 with the archiving level identifier set to III = L1B. For each Level 1a data file three files are generated:

Level 1b data file name:

rggttttL1B sss yydddhhmm qq.TAB

IFMS configuration file name level 1b:

rggttttL1B sss yydddhhmm qq.CFG

PDS label file names level 1b:

rggttttL1B sss yydddhhmm qq.LBL

The label file contains the description of the .TAB as well as of the .CFG file.

VENUS EXPRESS Radio Science VeRa

Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 80 of 150

VEX-VRA-IGM-IS-3009

7.2.1.3.2 Data file formats

The program will produce up to fifteen different level 1b data files along with their respective label files according to PDS standards. The data files contain Doppler data, ranging data, meteorological data and AGC data. The file type identifier sss is set to:

D1S	D2S	RGS	AG1	RCS	C1S	C2S
D1X	D2X	RGX	AG2	RCX	C2X	C2X
MET						

Furthermore, IFMS configuration files are created which contain the actual configuration of the respective IFMS (*tttt = ICL1, ICL2, ICL3* or *IOL3*). The extension of the configuration files are *eee = CFG*, they describe data files of file type *sss*.

7.2.1.3.2.1 The Doppler Files D1S, D1X, D2S, D2X

The program will read the information of the level 1a Doppler files and will produce Doppler files of level 1b containing data described in Table 7-11.

Column	description	Unit
1	sample number	
2	Ground received time as UTC in	
	ISO format	
3	Ground received time as UTC in	day
	fractions of day of year starting	
	with the first day of the year the	
	data was recorded in at 00:00.000	
4	Ground received time in	second
	Ephemeris time beginning at	
	J2000 (12 h 1 January 2000 TBD)	
5	Interval count	
6	Unwrapped phase	cycle
7	Spurious carrier	(Flag 0 or 1)
8	Delta delay	second

Table 7-11: Format of IFMS level 1b doppler files

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 81 of 150

VEX-VRA-IGM-IS-3009

7.2.1.3.2.2 The Ranging Files RGX, RGS

The program will read the information of the level 1a ranging file and will produce a level 1b ranging file containing data described in Table 7-12.

Column	description	Unit
1	Sample number	
2	Ground received time as UTC in ISO format	
3	Ground reveived time as UTC in fractions of day of year starting with the first day of the year the data was recorded in at 00:00.000	
4	Ground received time as Ephemeris time beginning at J2000 (12 h 1 January 2000 TBD)	second
5	Delay	second
6	Current Code	(Number 024)
7	Ambiguity Done	(Flag 0 or 1)
8	Spurious Carrier	(Flag 0 or 1)
9	Spurious Tone	(Flag 0 or 1)
10	Previous Correlation	(Flag 0 or 1)
11	Estimated Doppler Effect or more precisely: minus relative velocity of s/c over c	
12	DSP – Status	(Flag 0 or 1)
13	DSP – Integrated Tone	dB
14	DSP – Integrated Code	
15	DSP – Phase Error	cycle
16	DSP Toneloop SNR	dB
17	DSP Modulation Index	rad

Table 7-12: format of the IFMS level 1b ranging files

7.2.1.3.2.3 The Meteorological File MET

The program will read the information of the level 1a meteorological file and will produce a level 1b meteorological file for Earth atmosphere calibration. See section 10.1.4 for file name and file format description.

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 82 of 150

VEX-VRA-IGM-IS-3009

7.2.1.3.2.4 <u>The AGC files AG1 and AG2</u>

The program will read the information of the level 1a AGC files and will produce the level 1b AGC files containing data described in Table 7-13:.

Colum	Description	Unit
1	Sample number	N/A
2	Ground received time as UTC in ISO format	
3	UTC sample time in fractions of day of year starting with the first day of the year the data was recorded in at 00:00.000	day
4	Ephemeris time beginning at J2000 (12 h 1 January 2000 TDB)	second
5	Carrier Level	dBm
6	Polarisation Angle of received carrier signal	cycle

Table 7-13: Format of IFMS level 1b AGC files

7.2.1.3.2.5 The range calibration file RCX or RCS

See section 10.1.1

7.2.1.3.2.6The configuration files CFG

See section 8.2

7.2.1.3.2.7The doppler calibration files C1X, C1S, C2X, C2S

See section 10.1.3

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRa
Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 83 of 150

VEX-VRA-IGM-IS-3009

7.2.2 Closed-loop IFMS level 2 products

7.2.2.1 Specifications document

The IFMS level 2 processing is specified in the documents

MEX-MRS-IGM-DS-3035 ROS-RSI-IGM-DS-3118 VEX-VRA-IGM-DS-3011

IFMS Doppler Processing and Calibration Software: Level 1a to Level 2

MEX-MRS-IGM-DS-3036 ROS-RSI-IGM-DS-3119 VEX-VRA-IGM-DS-3012

IFMS Ranging Processing and Calibration Software: Level 1a to Level 2

7.2.2.2 Input files

The input files are:

- The IFMS level 1a files (D1S,D1X, D2S,D2X, RGX,RGS)
- The orbit reconstructed file (RWT or RON)
- The range calibration file (RCX or RCS)
- Meteorological file
- AGC file
- Klobuchar coefficients for Earth ionosphere calibration
- Spacecraft orbit SPICE kernels

7.2.2.2.1 The orbit reconstructed file RTW or RON

The content and format of the predict file is described in section 9.

7.2.2.2.2 The range calibration file RCX or RCS

The content and format of the range calibration file RCX and RCS is described in section 10

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRa
Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 84 of 150

VEX-VRA-IGM-IS-3009

7.2.2.3 Output IFMS Level 2 products

There may be several Doppler 1 X-Band files in level 1a which will

be merged on level 2. The same is true for all other Doppler file type and Ranging X and S-Band files. Only files with continous sequenced numbers (the file names are the same only the sequence number varies for these files) are merged together. Otherwise a new Level 02 data file is created (merging data files with a new sequence of files).

The level 2 source_product_id however gives the RAW IFMS file names since the raw files are used for processing. But the content of the IFMS raw files are identical to the corresponding level 1a IFMS files in one data set, only the file name is different. And the source_product_id of the level 1a files gives the original raw IFMS files. In addition the level 1A files have almost the same file name as the corresponding level 2 files. The corresponding level 1A files can be found in

DATA/LEVEL1A/CLOSED_LOOP/IFMS/DP1 for Doppler 1 files DATA/LEVEL1A/CLOSED_LOOP/IFMS/DP2 for Doppler 2 files DATA/LEVEL1A/CLOSED_LOOP/IFMS/RNG for Ranging files

```
M32ICL1L02 D1X 040931103 00.TAB
```

is a level 2 Doppler 1 X-Band file

in M32ICL1L02 D1X 040931103 00.LBL

the following SOURCE PRODUCT ID is given:

```
SOURCE_PRODUCT_ID = {"NN11_MEX1_2004_093_OP_D1_110358_0000", "NN11_MEX1_2004_093_OP_D1_110358_0001", "NN11_MEX1_2004_093_OP_D1_110358_0002"}
```

which are the raw IFMS files. The corresponding Level 1A files can be found in DATA/LEVEL1A/CLOSED LOOP/IFMS/DP1

Their names are:

M32ICL1L1A_D1X_040931103_00.RAW M32ICL1L1A_D1X_040931103_01.RAW M32ICL1L1A_D1X_040931103_02.RAW

and the corresponding label files give the source product id as:

in the M32ICL1L1A_D1X_040931103_00.LBL file the source_product_id is given as: SOURCE_PRODUCT_ID = "NN11_MEX1_2004_093_OP_D1_110358_0000"

in the M32ICL1L1A_D1X_040931103_01.LBL file the source_product_id is given as: $SOURCE_PRODUCT_ID = "NN11_MEX1_2004_093_OP_D1_110358_0001"$

in the M32ICL1L1A_D1X_040931103_02.LBL file the source_product_id is given as: SOURCE PRODUCT ID = "NN11 MEX1 2004 093 OP D1 110358 0002"

Note that in this example the three level 1A files were merged to one level 2 files. The file names of the level 1a files are almost identical to the level 2 file name with three differences:

- L1A instead of L02 in the file name which tells the user that these are level 1A and level 2 files.
- The two digit-sequence number at the end of the file can be different.
- The level 1A files have file extension .RAW whereas level 2 files have file extension .TAB

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 85 of 150

VEX-VRA-IGM-IS-3009

Table 7-14: Example of the connection of Level 2 and 1a files.

7.2.2.3.1 File name formats

The file names of the IFMS output level 2 files are formatted according to section 5.1 with the archiving level identifier set to III = L02 and the file source identifier set to tttt = ICL1 or ICL2 or ICL3 for the IFMS 1, 2 or 3, respectively. The file type is set to sss = D1X or D2X for X-band Doppler or sss = D1S or D2S for S-band Doppler, respectively, or sss = RGX or sss = RGX

r32ICL1L02_sss_yydddhhmm_qq.TAB

7.2.2.3.2 <u>Log-Files</u>

Additionally a log-file is produced which contains information about the Level 2 processing of Doppler or Ranging data. These log-files are stored in EXTRAS/ANCILLARY/MRS/LOGFILES or RSI/LOGFILES or VRA/LOGFILES. The name of the files are the same like the Level 2 data files except for the sequence number qq and the extension. The sequence number is started with 00 and will be incremented by every new processing of the data. The extensions will be .LOG

r32ICL1L02 sss yydddhhmm qq.LOG

```
MEX
GLOBAL GRAVITY
FLAGS FROM PROCESS OPTIONS FILE:
______
  Differential Range ON
  Processing with UniBW Predict
  Processing with AGC
  Processing with CGIM
Τ
  Processing with RCL
Τ
F
   Processing with MET
F
   Additional file for frequency correction
F
   One-Way Mode
F
  Active table is containing the correct frequency data
NUMBER OF INPUT FILES:
04 Number of RGX files
00 Number of RGS files
00 Number of AGX files
00 Number of AGS files
00 Number of MET files
FILES USED FOR PROCESSING:
```

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 86 of 150

VEX-VRA-IGM-IS-3009

Z:\ddswork\process data\Soft RNG L2\data\mars express\300\NN11 MEX1 2004 30 0 OP RG 235105 0000.raw Z:\ddswork\process data\Soft RNG L2\data\mars express\300\NN11 MEX1 2004 30 0 OP RG 235105 0001.raw Z:\ddswork\process data\Soft RNG L2\data\mars express\300\NN11 MEX1 2004 30 0 OP RG 235105 0002.raw Z:\ddswork\process data\Soft RNG L2\data\mars express\300\NN11 MEX1 2004 30 0 OP RG 235105 0003.raw Z:\ddswork\process data\Soft RNG L2\data\mars express\300\NN11 MEX1 2004 30 0 CL RG 202229 0000.raw Z:\ddswork\process_data\Soft_RNG_L2\data\mars_express\300\predict_300.txt Z:\ddswork\process data\Soft RNG L2\data\mars express\300\CGIM3000.04N\CGIM 3000.04N FILES CREATED DURING PROCESSING: Z:\ddswork\process data\Soft RNG L2\data\mars express\300\M32ICL1L02 RGX 04 3002351 00.TAB Z:\ddswork\process data\Soft RNG L2\data\mars express\300\M32ICL1L02 RGX 04 3002351 00.LBL Z:\ddswork\process data\Soft RNG L2\data\mars express\300\M32ICL1L02 RCX 04 3002022 00.TAB Z:\ddswork\process data\Soft RNG L2\data\mars express\300\M32ICL1L02 RCX 04 3002022 00.LBL CONFIGURATION INFO: ______ UPLINK-FREQUENCY X-BAND: 7166758739.9976720809936523 DOWNLINK-FREQUENCY X-BAND: 8420223886.7796421051025391 SAMPLE-INTERVAL X-BAND: 1.000 TRANSPONDER-RATIO X-BAND: 880/749 PROCESSING INFO: ______ PRODUCER ID: fels NO DIFFERENTIAL RANGE PLASMA-CORRECTION DONE WITH KLOBUCHAR-MODEL ERRORS: No Errors during processing

Table 7-15: Example log-file of Ranging Level 2 processing for MEX.

7.2.2.3.3 IFMS Browse Plots (Level 2)

In order to check data quality of IFMS Level 2 closed-loop data, quick look quality JPEG plots are produced. The name of the files are the same like the Level 2 data files except for the data type identifier which is set as sss=B1X,B1S,B2X,B2S if the source of the plots is a Doppler 1 X-Band, Doppler 1 S-Band, Doppler 2 X-Band or Doppler 2 S-Band file, and the extension will be .JPG

r32ttttL02_sss_yydddhhmm_qq.JPG

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 87 of 150

VEX-VRA-IGM-IS-3009

7.2.2.3.4 Data file formats Level 2

7.2.2.3.4.1 Calibrated Doppler files D1X, D1S, D2X, D2S

The calibrated Doppler files contain observed IFMS sky frequency, X-band Doppler and S-band Doppler frequency shift, residual (computed using the predict file), and the differential Doppler. If only a single downlink frequency was used, a differential Doppler cannot be computed and was set to zero in the output file. The formats are shown in 7-6 and Table 7-7.

7.2.2.3.4.2 Calibrated ranging files RGX and RGS

The level 2 ranging file contains the observed TWLT at X-band or S-band, the calibrated TWLT at X-band or S-band, the TWLT delay at X-band or S-band and the differential TWLT. If only one frequency was used, the differential TWLT is set to -99999.9. The formats are shown in Table 7-8 and Table 7-9.

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 88 of 150

VEX-VRA-IGM-IS-3009

8 FORMAT OF DESCRIPTIVE FILES

8.1 PDS LABEL FILES

8.1.1 File name

The extension is set to eee = LBL.

rggttttlll_sss_yydddhhmm_qq.LBL

8.1.2 File Format

All label files consist of a header and a description part of the format of the data file.

8.1.2.1 Header of label files

The header of a label file contains general information about the data file like PDS version id, record type and so on. See Table 8-1 for a detailed description.

8.1.2.2 Description part of label files

The description part of a label file contains information about the format and the data in every column of the according data file.

Line	Name	Description
1	Pds_version_id	Version number of the PDS standard document
2	Data_set_id	Identifier for data set or data product
3	DATA_SET_NAME	Long Identifier for the data set
4	MISSION_ID	Mission name abbreviation
5	MISSION_NAME	Mission name (long)
6	MISSION_PHASE_NAME	Mission phase, see MISSION.CAT for description
7	Processing_level_id	Identifier of a set of data according to the CODMAC standard
8	PRODUCT_TYPE	data processing type: UDR,EDR,RDR
9	Target_name	Identifies a target: MARS VENUS 67P / CHURYUMOV-GERASIMENKO (1969 R1) SUN PHOBOS
10	TARGET_TYPE	PLANET N/A COMET SUN SATELLITE
11	Observation_Type	Mode of the executed measurement. Possible values are: Commissioning, Occultation, Target Gravity,

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 89 of 150

VEX-VRA-IGM-IS-3009

		Global Gravity, Solar Conjunction, Bistatic Radar, Phobos Gravity
12	Instrument_host_name	Full name of the host on which an instrument is based MARS EXPRESS VENUS EXPRESS ROSETTA-ORBITER
13	instrument_host_id	The instrument_host_id element provides a unique identifier for the host where an instrument is located. This host can be either an earth base or a spacecraft MEX VEX RO
14	Instrument_name	Full name of an instrument MARS EXPRESS ORBITER RADIO SCIENCE VENUS EXPRESS RADIO SCIENCE ROSETTA RADIO SCIENCE INVESTIGATIONS
15	INSTRUMENT_TYPE	RADIO SCIENCE
16	Instrument_id	Acronym which identifies the instrument MRS VRA RSI
17	Producer_id	Name for the producer of the dataset IFMS_ESA/NNO DSN RIU_COLOGNE JPL SUE (Stanford University Center for Radar Astronomy)
18	PRODUCER_FULL_NAM E	MARTIN PAETZOLD
19	PRODUCER_INSTITUTIO N_NAME	RHEINISCHES INSTITUT FUER UMWELTFORSCHUNG
20	DSN_station_number	DSN station number
21	Product_creation_time	UTC system format time when a product was created
22	Spacecraft_clock_start_count	N/A
23	Spacecraft_clock_stop_count	N/A
24	Standard_data_product_id	TNF ODF RSR IFMS1, IFMS2, IFMS3
25	SC_SUN_POSITION_VE	for example:

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 90 of 150

VEX-VRA-IGM-IS-3009

	CTOR	(-140336628.815, -17453983.182, -7072874.318)
00	CO TABOUT DOCUTION	Only on level 2 available
26	SC_TARGET_POSITION VECTOR	N/A Only on level 2 available
27	SC_TARGET_VELOCITY	N/A
	VECTOR _	Only on level 2 available
28	SPACECRAFT_ALTITUD	N/A
	E	Only on level 2 available
29	SUB_SPACECRAFT_LAT	N/A
	ITUDE	Only on level 2 available
30	SUB_SPACECRAFT_LO	N/A
	NGITUDE	Only on level 2 available
31	POSITION_TIME	the Geometry Epoch which is the time associated
		with the central point of an observation sample.
		Usually the first sample given in the according DATA-file is taken.
		Only on level 2 available
32	DATA QUALITY DESC	N/A
32	DATA_QOALITI_DEGG	14/7
33	DATA_QUALITY_ID	N/A
34	instrument_mode_id	ONED, TWOD_X
35	instrument_mode_desc	ONE-WAY DUAL-FREQUENCY X&S-Band D/L
		TWO-WAY DUAL-FREQUENCY X-BAND U/L X&S-
		Band D/L
36	SPACECRAFT_POINTIN	EARTH
	G_MODE	NADIR
27	CDACECDAET DOINTING	SPECULAR
37	SPACECRAFT_POINTIN G MODE DESC	^MEX_POINTING_MODE_DESC.TXT (or ROS or
38	Product id	VEX), in folder DOCUMENT/ESA_DOC Permanent, unique identifier of the data product
36	Toduct_id	usually the filename of the data file which is described
		by this label
39	Source product id	The source product id data element identifies a
		product used as input to create a new product.
40	Software name	Name of data processing software (Not available in
	_	level 1a)
41	DESCRIPTION	Short description of data file

Table 8-1: Description of the header of label files

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 91 of 150

VEX-VRA-IGM-IS-3009

8.2 IFMS CONFIGURATION FILES

The configuration files contain the configuration or Active Table of each recording IFMS for each data type.

8.2.1 File name

The file type description is set to sss of the to be described IFMS data file and the extension is eee = CFG.

r32ttttL1B_sss_yydddhhmm_qq.CFG

SSS	Description
D1S	uncalibrated Doppler 1 data file S-band
D1X	uncalibrated Doppler 1 data file X-band
D2S	uncalibrated Doppler 2 data file S-band
D2X	uncalibrated Doppler 2 data file X-band
C1S	Doppler 1 calibration data file S-band
C1X	Doppler 1 calibration data file X-band
C2S	Doppler 2 calibration data file S-band
C2X	Doppler 2 calibration data file X-band
MET	Meteo file
RGS	uncalibrated S-band range data file
RGX	uncalibrated X-band range data file
RCS	S-band range calibration data file
RCX	X-band range calibration data file

Table 8-2: Calibration file description

8.2.2 File format

All configuration files are of the same format. See Appendix 13.1 for details.

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

> ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 92 of 150

VEX-VRA-IGM-IS-3009

8.3 ESOC ANCILLIARY FILES

8.3.1 Spacecraft Attitude Data; reconstructed

8.3.1.1 File name

Original file name:

ATNM FDxMMx DARyymmddhhmmss vvvvv.MEX

Where

	description
ATNM / ATNR / ATNV	Attitude file
	Acronym as described in [11]
FDxMMx / FDxRMx / FDxVMx	File source: ESOC Flight Dynamics (FDS) for the Mars Express Mission Control System (MMS) / for the Rosetta Mission Control System (RMS) / for the Venus Express Mission Control System (VMS)
D	Data
Α	ASCII data
R	Reconstructed data
yymmddhhmmss	Date specifies start time of the data in the file
VVVVV	Version number
MEX / ROS / VEX	Mars Express / Rosetta / Venus Express file

New Radio Science and PDS compliant file name:

r00ESOCL1A_ATR_yydddhhmm_vv.AUX

The data source identifier is set to tttt = ESOC, the data type identifier is set to sss = ATR for reconstructed attitude data. The sequence number is equal to the version number of the original file name. The extension is set to eee = AUX.

8.3.1.2 File format

The file format is described in the DDID Appendix H [referenced document 9]. A copy of the latest DDID Appendix H can be found on the most recent Data Archive Volumes. The structure of the Data Archive Volume is described in [10].

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 93 of 150

VEX-VRA-IGM-IS-3009

8.3.2 **Spacecraft orbit Event File**

8.3.2.1 File name

Original file name:

EVTM FDxMMx DA vvvvv.MEX

Where

	description
EVTM / EVTR / EVTV	Event file
	Acronym as described in [11]
FDxMMx / FDxRMx / FDxVMx	File source: ESOC Flight Dynamics
	(FDS) for the Mars Express Mission
	Control System (MMS) / for the Rosetta
	Mission Control System (RMS) / for the
	Venus Express Mission Control System
	(VMS)
D	Data
Α	ASCII data
	Blank (underscore)
	12x underscore
	no specific start date given
_vvvv	Version number
MEX/ROS/VEX	Mars Express/Rosetta/Venus Express file

New Radio Science and PDS compliant file name:

r00ESOCL1A EVT yydddhhmm vv.AUX

The data source identifier is set to tttt = ESOC, the data type identifier is set to sss = EVT for reconstructed attitude data. The sequence numbers are set to vv=00. The extension is set to eee = AUX. The event files are updated incrementally.

The time information in the Radio Science file name will be set to the last time the event file contains.

8.3.2.2 File format

The file format is described in the DDID Appendix H [referenced document 9]. A copy of the latest DDID Appendix H can be found on the most recent Data Archive Volumes. The structure of the Data Archive Volume is described in [10].

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 94 of 150

VEX-VRA-IGM-IS-3009

8.4 INFORMATION FILES

Information files contain collected information in plain ASCII (e.g. letters, emails, tables, notes, etc.) with regard to the respective data file to support analysis and interpretation.

8.4.1 **File name**

The extension is set to eee = TXT

rggttttL1B_sss_yydddhhmm_qq.TXT

examples are:

- The Experimenter Notebook file where file type description is set to *sss=ENB* which contains emails with configuration information about the measurement.
- The manifest files where file type description is set to sss=MFT which lists all data processed for a measurement with orginal and Radio Science compliant file name.
- The Data Collection list where file type description is set to sss=HEA. The file lists collected data.

8.4.2 File format

Plain ASCII text.

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 95 of 150

VEX-VRA-IGM-IS-3009

8.5 DSN MONITOR FILE

8.5.1 **Specification document**

none

8.5.2 <u>File name</u>

The file type description is set to sss=MON, the data source identifier is ttt=DSN0 and the extension is eee=TXT.

rggDSN0L1A_MON_yydddhhmm_qq.TXT

8.5.3 File format

none; ASCII file

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 96 of 150

VEX-VRA-IGM-IS-3009

8.6 DSN NETWORK MONITOR AND CONTROL FILE

8.6.1 Specification document

none

8.6.2 <u>File name</u>

The file type description is set to sss=NMC, the data source identifier is ttt=DSN0 and the extension is eee=TXT.

rggDSN0L1A_NMC_yydddhhmm_qq.TXT

8.6.3 File format

none; ASCII file

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 97 of 150

VEX-VRA-IGM-IS-3009

8.7 DSN SEQUENCE OF EVENTS FILE

8.7.1 Specification document

none

8.7.2 File name

The file type description is set to sss=SOE, the data source identifier is ttt=DSN0 and the extension is eee=TXT.

rggDSN0L1A_SOE_yydddhhmm_qq.TXT

8.7.3 File format

None; ASCII file

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 98 of 150

VEX-VRA-IGM-IS-3009

8.8 DSN EARTH ORIENTATION PARAMETER FILE

8.8.1 Specification document

TRK_2_21.TXT

8.8.2 File name

The file type description is set to sss=EOP the data source identifier is ttt=DSN0 and the extension is eee=TXT.

r00DSN0L1A_EOP_yydddhhmm_qq.TXT

8.8.3 File format

The Earth Orientation Parameters (EOP) file is generated by the Time and Earth Motion Precision Observation group at the NASA Jet Propulsion Laboratory. It is an ASCII file with several header records followed by a table with many records giving Earth orientation parameters:

column	description	unit
1	Modified Julian date	n/a
2	X coordinate of polar motion	milliarcseconds
3	Y coordinate of polar motion	milliarcseconds
4	TAI-UT1 or TAI-UT1R	n/a
5	TAI-UTC	seconds
6	nutation correction dPsi	milliarcseconds
7	nutation correction dEps	milliarcseconds

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 99 of 150

VEX-VRA-IGM-IS-3009

8.9 DSN LIGHT TIME FILE

8.9.1 **Specification document**

LIT_SIS.HTM

8.9.2 File name

The file type description is set to sss=LIT the data source identifier is ttt=DSN0 and the extension is eee=TXT.

r00DSN0L1A_LIT_yydddhhmm_qq.TXT

8.9.3 File format

The Light Time (LIT) file was generated at the NASA Jet Propulsion Laboratory to facilitate JPL/DSN support of the mission. It was derived from materials provided by the project. The LIT is an ASCII file having several header records followed by a table with light time values.

column	description	unit
1	Date and time at the spacecraft (yy-fff/hh:mm:ss format) in UTC	n/a
2	downlink light time (spacecraft to DSN station)	seconds
3	uplink light time (DSN station to spacecraft)	seconds
4	station number (03=generic)	n/a
5	line number (starting from 1)	n/a

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 100 of 150

VEX-VRA-IGM-IS-3009

8.10 DSN ORBIT PROPAGATION AND TIMING GEOMETRY FILE

8.10.1 Specification document

OPTG_SIS.TXT

8.10.2 File name

The file type description is set to sss=OPT the data source identifier is ttt=DSN0 and the extension is eee=TXT.

rggDSN0L1A_OPT_yydddhhmm_qq.TXT

8.10.3 File format

The Orbit Propagation and Timing Geometry (OPT) file was generated at the NASA Jet Propulsion Laboratory to facilitate JPL/DSN support of the project. It was derived from materials provided by the Project. The OPT is an ASCII file having several header records followed by a table of time-ordered orbit events (equator crossings, occultations, eclipses, periapsis times, etc.).

column	description	unit
1	event title (e.g., PERIAP for periapsis passage)	n/a
2	body name (e.g., MARS)	n/a
3	spacecraft ephemeris time of event (yyyy-dddThh:mm:ss.fff format)	n/a
4	Julian date	n/a
5	ET-UTC	n/a
6	orbit number	n/a
7	time from periapsis (sDDDDDThh:mm:ss.fff format)	n/a
8	Sun-Earth-probe angle	degrees

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 101 of 150

VEX-VRA-IGM-IS-3009

9 ORBIT FILES

9.1 DOPPLER AND RANGE PREDICTION FILE

9.1.1 Specification document

MEX-MRS-IGM-DS-3039 ROS-RSI-IGM-DS-3121 VEX-VRA-IGM-DS-3012

Radio Science Predicted and Reconstructed Orbit Data: Specifications

The Doppler and range predict file is provided by UniBwM and contains predicted Doppler and range for a given time span for one-way and two-way data.

9.1.2 File name

The predict file name is formatted according to section 4.1 by setting the archiving level to III = L02 and the file type to sss = PTW or sss = PON for two-way or one-way data, respectively. The file source is set to tttt = UNBW. The predict file is always relative to a given ground station (topocentric).

rggUNBWL02_sss_yydddhhmm_qq.TAB

9.1.3 File format

9.1.3.1 Two-way Doppler and range predict files

column	description	unit	resolution
1	sample number		
2	year (t _{TWRD})		
3	UTC Time stamp in ISO format (t _{TWRD})		
4	UTC Time in Fractions of DOY (t _{TWRD})	days	10 ⁻⁷ days
5	Ephemeris Time since J2000 (12 h 1 January 2000 TBD) (t_{TWRD})	days	Integer
6	TWUL Doppler $\frac{V_{LOS,UL}}{c}$		10 ⁻¹⁴
7	TWDL Doppler $\frac{V_{LOS,DL}}{c}$		10 ⁻¹⁴
8	TWUL Doppler $\frac{V_{LOS,UL}}{c}$ considering gravity fields degree and order I,m <= 10		10 ⁻¹⁴
9	TWDL Doppler $\frac{V_{LOS,DL}}{c}$ considering gravity fields degree and order I,m <= 10		10 ⁻¹⁴
	uegree and order 1,111 \= 10		

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 102 of 150

VEX-VRA-IGM-IS-3009

10	TW geom. range (r _{SC} (t _{TWE}) - r _{GS} (t _{TWE}))	km	0.1 km
11	TW range	km	0.1 km
	$((r_{SC}(t_{TWRU})-r_{GS}(t_{TWE}))+((r_{GS}(t_{TWRD})-r_{SC}(t_{TWRU})))$		
	DLLT (t _{TWRU} - t _{TWRD})	seconds	nsec
13	TWLT (t _{TWE} -t _{TWRD})	seconds	nsec

Table 9-1: Two-way Doppler and range prediction file format

9.1.3.2 One-way Doppler and range predict files

column	description	unit	resolution
1	sample number		
2	Year (t _{OWR})		
3	UTC Time stamp in ISO format (t _{TWRD})		
4	UTC Time in Fractions of DOY (t _{TWRD})	days	10 ⁻⁷ days
5	Ephemeris Time since J2000 (12 h 1 January	days	Integer
	2000 TBD) (t _{TWRD})		
6	OW geom. range ($r_{SC}(t_{OWE}) - r_{GS}(t_{OWE})$)		
7	One-Way Doppler $\frac{V_{LOS}}{c}$		10 ⁻¹⁴
8	One-Way Doppler $\frac{V_{LOS}}{c}$ considering gravity fields		10 ⁻¹⁴
	degree and order I,m <= 10		
9	OWLT (t _{OWR} – t _{OWE})	seconds	nsec

Table 9-2: One-way Doppler and range prediction file format

Nomenclature:

OW one way link

TW two way link

UL uplink
DL downlink

c speed of light (c = 299,792,458 m/s)

LT Light time

 v_{LOS} relative velocity between ground station and S/C (in the line of sight)

r_{SC}(t) Position of S/C at time t

r_{GS}(t) Position of ground station at time t

t_{OWE} Time at emission of signal at S/C (one-way calculation)

t_{OWR} Time at reception of signal at ground station (one-way calculation)

t_{TWE} Time at emission of signal at ground station (two-way calculation)

t_{TWRU} Time at reception of signal at S/C (two-way calculation - uplink)

t_{TWRD} Time at reception of signal at ground station (two-way calculation - downlink)

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 103 of 150

VEX-VRA-IGM-IS-3009

9.2 RECONSTRUCTED DOPPLER & RANGE ORBIT FILE

The Doppler and range reconstructed orbit file is provided by UniBwM and contains post-observation reconstructed Doppler and range for a given time span for one-way and two-way data.

9.2.1 File name

The orbit file name is formatted according to section 5.1 by setting the archiving level to III = L02 and the file type to sss = RTW or sss = RON for two-way or one-way data, respectively. The file type is set to ttt = ORB. The predict file is always relative to a given ground station (topocentric).

rggUNBWL02_sss_yydddhhmm_qq.TAB

9.2.2 File format

9.2.2.1 Two-way Doppler and range reconstructed orbit files

column	description	unit	resolution
1	sample number		
2	year (t _{TWRD})		
3	UTC Time stamp in ISO format (t _{TWRD})		
4	UTC Time in Fractions of DOY (t _{TWRD})	days	10 ⁻⁷ days
5	Ephemeris Time since J2000 (12 h 1 January 2000 TBD) (t_{TWRD})	days	Integer
6	TWUL Doppler $\frac{V_{LOS,UL}}{c}$		10 ⁻¹⁴
7	TWDL Doppler $\frac{v_{LOS,DL}}{c}$		10 ⁻¹⁴
8	TWUL Doppler $\frac{V_{LOS,UL}}{c}$ considering gravity fields		10 ⁻¹⁴
9	degree and order I,m <= 10		
9	TWDL Doppler $\frac{V_{LOS,DL}}{c}$ considering gravity fields		10 ⁻¹⁴
	degree and order I,m <= 10		
10	TW geom. range ($r_{SC}(t_{TWE}) - r_{GS}(t_{TWE})$)	km	0.1 km
11	TW range	km	0.1 km
	$((r_{SC}(t_{TWRU})-r_{GS}(t_{TWE}))+((r_{GS}(t_{TWRD})-r_{SC}(t_{TWRU})))$		
12	DLLT (t _{TWRU} - t _{TWRD})	seconds	nsec
13	TWLT (t _{TWE} -t _{TWRD})	seconds	nsec

Table 9-3: File format description of Two-way Doppler reconstructed files.

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 104 of 150

VEX-VRA-IGM-IS-3009

9.2.2.2 One-way Doppler and range reconstructed orbit files

column	description	unit	resolution
1	sample number		
2	Year (t _{OWR})		
3	UTC Time stamp in ISO format (t _{TWRD})		
4	UTC Time in Fractions of DOY (t _{TWRD})	days	10 ⁻⁷ days
5	Ephemeris Time since J2000 (12 h 1 January	days	Integer
	2000 TBD) (t _{TWRD})		
6	OW geom. range ($r_{SC}(t_{OWE}) - r_{GS}(t_{OWE})$)		
7	One-Way Doppler $\frac{V_{LOS}}{c}$		10 ⁻¹⁴
8	One-Way Doppler $\frac{V_{LOS}}{c}$ considering gravity fields		10 ⁻¹⁴
	degree and order I,m <= 10		
9	OWLT (t _{OWR} – t _{OWE})	seconds	nsec

Table 9-4: One-way Doppler and range prediction file format

Nomenclature:

OW one way link

TW two way link

UL uplink DL downlink

c speed of light (c = 299,792,458 m/s)

LT Light time

 v_{LOS} relative velocity between ground station and S/C (in the line of sight)

 $r_{SC}(t)$ Position of S/C at time t

 $r_{\text{GS}}(\overrightarrow{t})$ Position of ground station at time t

 t_{OWE} Time at emission of signal at S/C (one-way calculation)

t_{OWR} Time at reception of signal at ground station (one-way calculation)

 t_{TWE} Time at emission of signal at ground station (two-way calculation) t_{TWRU} Time at reception of signal at S/C (two-way calculation - uplink)

t_{TWRD} Time at reception of signal at ground station (two-way calculation - downlink)

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 105 of 150

VEX-VRA-IGM-IS-3009

9.3 SPACECRAFT HELIOCENTRIC CRUISE ORBIT FILE

9.3.1 <u>File name</u>

Original file name:		
	ORHM_FDxMMx_DA	vvvv.MEX

Where

	description
ORHM / ORHR / ORHV	Mars Express/Rosetta/Venus Express
	orbit, cruise, heliocentric
	Acronym as described in [11]
FDxMMx / FDxRMx / FDxVMx	File source: ESOC Flight Dynamics
	(FDS) for the Mars
	Express/Rosetta/Venus Express Mission
	Control System (MMS)
D	Data
A	ASCII data
_	Blank (underscore)
	12x blank (underscore)
	no specific time or time range given
_vvvv	Version number
MEX / ROS / VEX	Mars Express/Rosetta/Venus Express file

New radio science and PDS compliant file name:

r00ESOCL1A_OHC_yydddhhmm_vv.AUX

The data source identifier is set to tttt = ESOC, the data type identifier is set to sss = OHC for the heliocentric cruise orbit file. The sequence number is equal to the version number of the original file name. The extension is set to eee = AUX.

9.3.2 File format

The file format is described in the DDID Appendix H [referenced document 9]. A copy of the latest DDID Appendix H can be found on the most recent Data Archive Volumes. The structure of the Data Archive Volume is described in [10].

VENUS EXPRESS Radio Science VeRa
Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 106 of 150

VEX-VRA-IGM-IS-3009

9.4 SPACECRAFT MARSCENTRIC/VENUSCENTRIC ORBIT FILE

9.4.1 File name

Original file name:

ORMM_FDxMMx_DA_yymmddhhmmss_vvvvv.MEX

Where

	description
ORMM / ORMR / ORVV	Mars Express / Rosetta orbit, operational,
	Marscentric; Venus Express Venuscentric
	Acronym as described in [11]
FDxMMx / FDxRMx / FDxVMx	File source: ESOC Flight Dynamics
	(FDS) for the Mars Express Mission
	Control System (MMS) / for the Rosetta
	Mission Control System (RMS) / Venus
	Express (VMS)
D	Data
Α	ASCII data
	Blank (underscore)
yymmddhhmmss	Date specifies start time of the data in the
	file
_vvvv	Version number
MEX / ROS / VEX	Mars Express/Rosetta/Venus Express file

New Radio Science and PDS compliant file name:

r00ESOCL1A_OMO_yydddhhmm_vv.AUX

The data source identifier is set to tttt = ESOC, the data type identifier is set to sss = OMO/OVO for the marscentric/venuscentric operational orbit file. The sequence number is not equal to the version number of the original file name. Instead they get a new chronological sequence number. OMO/OVO files always cover a month of orbit data and get frequently updated. Therefor the first file from ESOC that covers a specific file gets after renaming the sequence number $_{0}$ 00 and when an updated $_{0}$ 00/ $_{0}$ 00 is received the new file will get the same file name as the first file but the sequence number is increased by one and so on. Utimately only the files with the higest version numbers will be archived since these contain the latest orbit information. The extension is set to eee = AUX.

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 107 of 150

VEX-VRA-IGM-IS-3009

9.4.2 File format

The file format is described in the DDID Appendix H [referenced document 9]. A copy of the latest DDID Appendix H can be found on the most recent Data Archive Volumes. The structure of the Data Archive Volume is described in [10].

9.5 ROSETTA ORBIT FILES

9.5.1 File name

Original file name:

cccc FDxRMx DA vvvvv.ROS

Where

	description	
cccc	Data type identifier	
FDxRMx	File source: ESOC Flight Dynamics	
	(FDS) for the Rosetta Mission Control	
	System (RMS)	
D	Data	
Α	ASCII data	
_	Blank (underscore)	
	12x blank (underscore)	
	no specific time or time range given	
_VVVVV	Version number	
ROS	Rosetta file	

New RSI and PDS compliant file name:

R00ESOCL1A_sss_yydddhhmm_vv.AUX

The data source identifier is set to *tttt* = *ESOC*.

The time stamp *yydddhhmm* is the start time of the file.

The sequence number is not equal to the version number of the original file name. Instead they get a new chronological sequence number starting by 00 for the first available file. When an updated file is received the new file will get a by one increased sequence number. Utimately only the files with the higest version numbers will be archived since these contain the latest orbit information.

The extension is set to eee = AUX.

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 108 of 150

VEX-VRA-IGM-IS-3009

The data type identifier is set from cccc to sss:

Orginal (cccc)	New(sss)	description
ORER	OER	Earth centric 1. flyby / Rosetta
ORFR	OFR	Earth centric 2. flyby / Rosetta
ORGR	OGR	Earth centric 3. flyby / Rosetta
ORMR	OMR	Mars centric / Rosetta
ORHR	OHR	Heliocentric / Rosetta
ORHO	OHO	Heliocentric / 1. flyby asteroid
ORHS	OHS	Heliocentric / 2.flyby asteroid
ORHW	OHW	Heliocentric / Churyumov-Gerasimenko
ORPR	OPR	Medium term planning / Rosetta
ORWR	OWR	comet centric / Rosetta

9.5.2 File format

The file format is described in the DDID Appendix H [referenced document 9]. A copy of the latest DDID Appendix H can be found on the most recent Data Archive Volumes. The structure of the Data Archive Volume is described in [10].

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 109 of 150

VEX-VRA-IGM-IS-3009

10 CALIBRATION FILES

10.1 IFMS CALIBRATION FILES

10.1.1 IFMS Range Calibration level 1b

The IFMS range calibration file is taken before or after the NNO, CEB or MAL tracking pass and contains the range delay within the IFMS ground station equipment.

10.1.1.1 File name

The range calibration file name is formatted according to section 5.1 by setting the archiving level to III = L1B, the file type to sss = RCX or RCS, the file type is set to tItt = ICL1 or ICL2, depending on the uplinking IFMS and the ground station is gg = 32, 62 or 84.

rggttttL1B_sss_yydddhhmm_qq.TAB

10.1.1.2 File format

The file content and file format for the range calibration file is identical to the regular range file as described in section 7.2.1.3.2.2.

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 110 of 150

VEX-VRA-IGM-IS-3009

10.1.2 IFMS Range Calibration level 2

10.1.2.1 Specification document

MEX-MRS-IGM-DS-3036 ROS-RSI-IGM-DS-3119 VEX-VRA-IGM-DS-3012

IFMS Ranging Processing and Calibration Software: Level 1a to Level 2 Software Design Specifications

The range calibration file Level 2 contains the measured equipment delay, the average value and the 1-sigma rms value. The difference to the Level 1b file is the resolved ambiguity of the measured range delay.

10.1.2.2 File name

The range calibration file name is formatted according to section 5.1 by setting the archiving level to III = L02, the file type to sss = RCX or RCS, the file type is set to tItt = ICL1 or ICL2, depending on the uplinking IFMS and the ground station is gg = 32, 62 or 84

rggttttL02_sss_yydddhhmm_qq.TAB

10.1.2.3 File format

column	description	unit	resolution
1	Sample number		
2	Ground received time as UTC in ISO format		
3	Ground received time as UTC in fractions of day of year starting with the first day of the year the data was recorded in at 00:00.000		10 ⁻⁷ day
4	Ground received time as Ephemeris time beginning at J2000 (12 h 1 January 2000 TDB)	second	Second
5	Mean average value of equipment propagation delay	second	nsec
6	equipment propagation delay	second	nsec
7	Root Mean Square of equipment propagation delay	second	nsec

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 111 of 150

VEX-VRA-IGM-IS-3009

10.1.3 IFMS Doppler Calibration Files

The IFMS doppler calibration file is taken before or after the NNO, CEB or MAL tracking pass at the same time as the IFMS ranging calibration file.

10.1.3.1 File name

The doppler calibration file name is formatted according to section 5.1 by setting the archiving level to III = L1B, the file type to sss = C1X or C2X or C1S or C2S, the file type is set to tItt = ICL1 or ICL2, depending on the uplinking IFMS and the ground station is gg = 32, 62 or 84.

rggttttL1B sss yydddhhmm qq.TAB

10.1.3.2 File format

The file content and file format for the doppler calibration file is identical to the regular doppler file as described in section 7.2.1.3.2.1.

Column	description	Unit
1	sample number	
2	Ground received time as UTC in ISO format	
3	Ground received time as UTC in fractions of day of year starting with the first day of the year the data was recorded in at 00:00.000	
4	Ground received time as Ephemeris time beginning at J2000 (12 h 1 January 2000 TDB)	second
5	Interval count	
6	Unwrapped phase	cycle
7	Spurious carrier	
8	Delta delay	second

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 112 of 150

VEX-VRA-IGM-IS-3009

10.1.4 IFMS meteorological calibration

The meteorological file is the Level 1b IFMS output and describes the temperature, atmospheric pressure and humidity at the ground station site. The file is accompagnied by the IFMS configuration file *.CFG (see Appendix 13.1 for content). Since the meteorological information is stored independently from doppler and ranging measurements, these files usually do not start and stop at the same time as a Doppler or range data file. That means that sometimes the meteorological data applicable for a Doppler or range data file has to be extracted from two files.

10.1.4.1 File name format

The file name of the meteorological file is formatted according to section 5.1 by setting the archiving level to III = L1B, the file type to sss = MET, the file type is set to tItt = ICL1 or ICL2, depending on the uplinking IFMS and the ground station is gg = 32, 62, 84.

rggttttL1B_MET_yydddhhmm_qq.TAB

10.1.4.2 File format

Column	description	Unit
1	Sample number	
2	UTC Time in ISO format	
3	UTC Time in DOY and fractions of day	day
4	Ephemeris time since J2000 (12 h 1 January 2000 TDB)	second
5	Humidity	%
6	Pressure	HectoPascal
7	Temperature	° C

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 113 of 150

VEX-VRA-IGM-IS-3009

10.1.5 Corrected Uplink Frequency

The wrong uplink frequency is sometimes provided in the IFMS Level 1a Doppler Raw-Files coming from ESOC. The correct frequency will be calculated and corrected in Level 2 data files. The Level 1a file including the wrong frequency, the appropriate Level 2 file including the correct frequency, the wrong and correct frequency and the source file from which the correct frequency was derived are provided for each occurrence of this error in the folder UPLINK_FREQ_CORRECT in the CALIB directory.

UPLINK_FREQ_CORRECT_GGnn_Dd.TAB

Acronym	Description	Example
GG	NNO, CEB, MAL	NN
nn	IFMS 1, 2 or 3	11
		12
		13
d	Doppler channel 1 or 2	1
		2

Table 10-1: File Naming Convention of the files indicating wrong and false uplink frequency and their corresponding source files.

There will be no UPLINK_FREQ_CORRECT folder if all uplink frequencies in the Level 1a IFMS Doppler files are correct.

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 114 of 150

VEX-VRA-IGM-IS-3009

10.2 DSN CALIBRATION FILES

10.2.1 DSN METEO Calibration File

10.2.1.1 Specification document:

TRK_2_24.TXT

10.2.1.2 File name format

This file presents meteorological data as a function of time at the location of the DSN ground station complexes. gg = 10, 40, 60 is set for the ground station complex

rggDSN0L1A_MET_yydddhhmm_qq.AUX

10.2.1.3 File format

The file has a header line:

DATE: yymmdd DOY: ddd DSS gg

And six columns with meteorological information for every 30 minutes

column	description	unit
1	time	hhmm
2	dew point temperature	degree Celsius
3	temperature	degree Celsius
4	pressure	mbar
5	H2O partial pressure	mbar
6	relative humidity	%

The format repeats itself for each day of the year.

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 115 of 150

VEX-VRA-IGM-IS-3009

10.2.2 DSN modified METEO Calibration File

The DSN meteorological calibration was modified to match the format of the IFMS meteorological calibration file in order to be able to reuse existing software modules for the ODF processing at the L1B data level. One file for each ground station complex was created.

10.2.2.1 File name format

This file presents meteorological data as a function of time at the location of one DSN ground station complex by setting gg = ground station complex.

rggDSN0L1B_MET_yydddhhmm_qq.TAB

10.2.2.2 File format

Column	description	Unit
1	Sample number	
2	UTC time in ISO format	
3	UTC time in DOY and fractions of day	day
4	Ephemeris time since J2000 (12 h 1 January 2000 TDB)	second
5	Humidity	%
6	Pressure	hecto Pascal
7	Temperature	° C

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 116 of 150

VEX-VRA-IGM-IS-3009

10.2.3 DSN Tropospheric Calibration File

10.2.3.1 Specification Document

TRK_2_23.TXT

10.2.3.2 File name format

This file presents a model of the Earth troposphere at the location of a DSN ground station antenna.

$rggDSN0L1A_TRO_yydddhhmm_qq.AUX$

10.2.3.3 File format

Ascii file

MARS EXPRESS Radio Science Experiment Mars

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 117 of 150

VEX-VRA-IGM-IS-3009

10.2.4 DSN Ionospheric Calibration File

10.2.4.1 Specification Document

TRK_2_23.TXT

10.2.4.2 File name format

This file presents a model of the Earth ionosphere at the location of a DSN ground station antenna.

rggDSN0L1A_ION_yydddhhmm_qq.AUX

10.2.4.3 File format

Ascii file

10.2.5 Surface Reflection Filter Files

Surface Reflection Filter files (SRF) contain power spectra derived from noise measurements when the radio system was stable and there were no spacecraft signals in the passband. SRF's were derived separately for each receiver channel; but the fact that the spectral characteristics of each receiver depended almost entirely on digital signal processing meant that there was little practical difference among channels when sampling rates (output bandwidths) were the same and the SRF's were interchangeable. These are calibration files associated with bistatic radar measurements.

10.2.5.1 File name format

GNC's are ASCII files having names of the form

rggSUE0L02 SRF yydddhhmm qq.TAB

10.2.5.2 File format

SRF's are ASCII PDS SPECTRUM objects with attached labels.

10.2.6 Bistatic Radar Calibration Log Files

Bistatic radar calibration log files (BCL) contain system temperature calibration results. For each receiver channel the table includes the best estimate of system temperature with the antenna pointed to zenith (either pre- or post-cal, or a

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 118 of 150

VEX-VRA-IGM-IS-3009

combination of both), the associated noise diode temperature, and the system temperature at the mid-point of the bistatic (surface) observation. In general there is one set of four rows for each experiment - one for each receiver channel (X-band and S-band, right- and left-circular polarization). The table is cumulative, growing by four rows for each new observation. The Bistatic Radar Calibration files are produced by the Stanford University Element (SUE) under the direction of R.A. Simpson.

10.2.6.1 File name format

BCLs are ASCII files having names of the form

rggSUE0L1A_BCL_yydddhhmm_qq.TAB

Since these files are cumulative the first file from Stanford gets after renaming the sequence number $_00$ and when an updated BCL – usually after a new bistatic radar measurement - is received the new file will get the same file name as the first file but the sequence number is increased by one and so on. Utimately only the files with the higest version numbers will be archived since these contain the latest information. The extension is set to eee = TAB

10.2.6.2 File format

BCLSs are ASCII tabels with dettached labels.

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 119 of 150

column	description	unit
1	Antenna number	n/a
2	Receiver channel and polarization. Possible values are: XR: X-Band; right circular XL: X-Band; left circular SR: S-Band; right circular SL: S-Band; left circular	n/a
3	Zenith time in UTC; ZENITH_TIME is usually an average time for the interval over which the values were obtained, typically a few tens of minutes. in some cases pre-calibration and post-calibration values were both used, in which case the interval covers several hours.	n/a
4	System temperature with the antenna pointed to zenith by comparing powers from an ambient load and sky	Kelvin
5	Noise diode temperature. The effective temperature of the calibration noise diode obtained by comparing its additive power against the value in Column 4 with the antenna pointing to zenith	Kelvin
6	BSR time in UTC; The time of the bistatic radar measurement Typically the center time for an interval of about 20 minutes to which the value in Column 7 applies.	n/a
7	System temperature at the center of the observing interval during which bistatic radar surface surface echoes were being received.	Kelvin

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 120 of 150

VEX-VRA-IGM-IS-3009

Page intentionally left free

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 121 of 150

VEX-VRA-IGM-IS-3009

11 SPICE

11.1 INTRODUCTION

11.1.1 Spice files

The NAIF group at JPL will produce SPICE files from the mission orbit files generated by ESOC. The SPICE files relevant for the respective Radio Science data will be copied on the archive CD-ROM volume. They are also available from the following file servers:

At ESTEC:

ftp://gorilla.estec.esa.int/pub/projects/MEX/data/spice

/VenusExpress/ /rosetta/

at JPL:

ftp://naif.jpl.nasa.gov/pub/naif/MEX

/VEX

/ROSETTA

Available SPICE files:

CDIZ

١.	SFK	spaceciall orbit kerner lie
2.	EK	ephemeris kernel file for the planet
_		

3. CK C-matrix instrument attitude kernel file

anagaraft arbit karnal fila

4. TLS leap second kernel file

5. FK frame kernel file6. IK instrument kernel file7. ORBNUM orbit numbering kernel file

8. PCK planetary constant kernel file 9. SCLK spacecraft clock kernel file

11.1.2 File handling and description

The documentation of the SPICE subroutines and the use of the kernels is described in [15] and can be retrieved from

ftp://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/

11.1.3 Modified Spice Kernels

RSR files are accompanied by modified spice kernels were the original NAIF SPICE kernels are combined with the JPL DE405 and Phobos/Deimos ephemerides. For information regarding these files see:

http://ssd.jpl.nasa.gov

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 122 of 150

VEX-VRA-IGM-IS-3009

11.2 SPK ORBIT KERNEL FILE

11.2.1 File name

ESTEC original file name:

AAAA	vvvvv.BSP
AAAA	VVVVV.D3P

Where

	description
aaaa	ORMM = spacecraft orbit, operational, marscentric ORMF = spacecraft orbit, marscentric, long term planning
	ORHM = spacecraft orbit, cruise, heliocentric, Mars Express Acronym as described in [11]
	14 underscores
VVVVV	Version number
BSP	Binary SP file

The letter M in the filenames is replaced by V for Venus (also then Venus centric). For Rosetta see section 9.5.1 and the values for aaaa.

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 123 of 150

VEX-VRA-IGM-IS-3009

11.3 EK EPHEMERIS KERNEL FILE

There are no ephermeris kernels for the three missions Mars Express, Rosetta and Venus Express.

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 124 of 150

VEX-VRA-IGM-IS-3009

11.4 CK C-MATRIX INSTRUMENT ATTITUDE FILE

11.4.1 File name

ESTEC original file name:

ATNM_Pyymmddhhmmss_vvvvv.BC

Where

	description
ATNM	Predicted / reconstituted attitude
	Acronym as described in [11]
Р	P = predicted
yymmddhhmmss	Time stamp
VVVVV	Version number
BC	Binary CK file

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 125 of 150

VEX-VRA-IGM-IS-3009

11.5 TLS LEAP SECOND KERNEL FILE

11.5.1 File name

JPL/NAIF original file name:

NAIFvvvv.TLS

currently the most actual leap second file.

Where

	description
VVVV	Version number (currently 0008)

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 126 of 150

VEX-VRA-IGM-IS-3009

11.6 FK FRAME KERNEL FILE

11.6.1 Frame Kernel File name

There are five actual JPL/NAIF frame kernel files with the original file names:

Original file name	description	
EARTH_TOPO_yymmdd.TF	Frame kernel file for all DSN ground stations. This	
	kernel was released on yy-mm-dd.	
NEW_NORCIA_TOPO.TF	Frame kernel file for the 35-m station in New Norcia	
	(NNO). An read.me file is available.	
	A location SPK file is available under the old file name	
	NEW_NORCIA.BSP and described in 11.6.2	
EARTHFIXEDIAU.TF	SPICE reference frame mapped to EARTH_IAU	
EARTHFIXEDITRF93.TF	SPICE reference frame mapped to IRTF 1993	
MEX_V08.TF	Mars Express / Rosetta / Venus Express spacecraft	
ROS_V12.TF	frame kernel	
VEX_V06.TF		
RSSD0001.TF	FK kernel defining a number of mission independent	
	frames that could be used by any of the users of any of	
	the ESA planetary missions	

11.6.2 Location Kernel file name

The following location kernels are available:

Original NAIF file name	description	
NEW NORCIA.BSP	A location SPK file for the 35-m New Norcia station	

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 127 of 150

VEX-VRA-IGM-IS-3009

11.7 IK INSTRUMENT KERNEL FILE

11.7.1 File name

There is no Instrument Kernel for the Radio Science experiment.

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 128 of 150

VEX-VRA-IGM-IS-3009

11.8 ORBNUM ORBIT NUMBERING FILE

11.8.1 File name

ESTEC original file name:

ORMF_____vvvvv.ORB ORMM_MERGED_vvvvv.ORB

Where

	description	
ORMF/ORVF	s/c orbit, marscentric/venuscentric, Long Term Planning	
	Aconym as described in [11]	
ORMM/ORVV	s/c orbit, operational, marscentric/venuscentric	
	14 underscores (for ORMF/ORVF)	
MERGED	For ORMM/ORVV	
VVVVV	Version number	
	the highest version number presents the most actual file	
ORB	Orbit numbering file	

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 129 of 150

VEX-VRA-IGM-IS-3009

11.9 PCK PLANETARY CONSTANT FILE

11.9.1 File name

NAIF original file name	description	
DE403-MASSES.TPC	Contains the masses for the sun and planetary barycentres.	
EARTH_[sdat]_[edat]_[pdat].BPC	PCK file containing the orientation of the Earth as a function of time for the interval [sdat] to [edat]. From [pdat] the information contained in the file corresponds to predicted data.	
PCK00008.TPC	Contains the size, shape, radii and orientation constants for planets, satellites, Sun and some asteroids.	
Mars Express		
MARS_IAU2000_V0.TPC	Mars planetary constant file (including satellites)	
Rosetta		
ROS_LUTETIA_LC1_V02.TPC	Asteroid Lutetia file, according to lightcurves Pole solution #1 (Reference see below)	
ROS_LUTETIA_LC2_V02.TPC	Asteroid Lutetia file, according to lightcurves Pole solution #2 (Reference see below)	
ROS_LUTETIA_R1_V02.TPC	Asteroid Lutetia file, according to Radar Pole solution #1 (Reference see below)	
ROS_LUTETIA_R2_V02.TPC	Asteroid Lutetia file, according to Radar Pole solution #2 (Reference see below)	
ROS_STEINS_V02.TPC	Asteroid Steins file	
Venus Express		
tbd		

Reference: "The Rosetta Asteroid Targets", M. A. Barucci, Padova. 31 Jan 2006

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 130 of 150

VEX-VRA-IGM-IS-3009

11.10 SCLK SPACECRAFT CLOCK KERNEL FILE

11.10.1 <u>File name</u>

NAIF original file name:

MEX_yymmdd_STEP.TSC

Where

	description	
MEX_yymmdd_STEP.TSC	This file is a SPICE spacecraft clock (SCLK) kernel	
	containing information required for MEX/Rosetta/VEX	
VEX_yymmdd_STEP.TSC	spacecraft on-board clock to UTC conversion.	
	The most actual file will be provided	
yymmdd	Is the start time of the clock kernel	

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 131 of 150

VEX-VRA-IGM-IS-3009

Page left free

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 132 of 150

VEX-VRA-IGM-IS-3009

12 TIME STANDARDS AND FORMATS

12.1 TIME STANDARDS

MaRS, RSI and VeRa data products make use of different Time and Reference systems. For our data processing and archiving the most important Time Systems are:

1. Coordinated Universal Time (UTC)

2. Ephemeris Time (ET)

The scientific success of a Radio Science Experiment depends critically on a common understanding about the conventions for the reference and time systems. The following sections give an overview of the time standards necessary to understand the above mentioned Time Systems and to convert to other common Time Systems. It should be noted that radio science data are generated and recorded at ground stations. Thus the times given in the data and label files are ground station and not onboard time.

Note: In some equations the letters h, m, s or d are used. They refer to hour, minute, second or day of the corresponding value.

12.1.1 Coordinated Universal Time (UTC)

Coordinated Universal Time (UTC) is obtained from atomic clocks running at the same rate as TT (see section 12.1.3.3) or TAI (see section 12.1.3.2). The UTC time scale is always within 0.7 seconds of UT1 (see section 12.1.3.5). By the use of leap seconds, care is taken to ensure that this difference is never exceeded. However, because of the introduction of the leap seconds it becomes clear that this time scale is not steady.

The International Earth Rotation Service (IERS) can add leap seconds and is normally doing this at the end of June or December of each year if necessary. The actual UTC can only be determined for a previous point in time but predictions for the future are published by the IERS. This fact should be noted when future missions are planned on the base of the UTC time standard.

UTC can be obtained by the difference of the predicted value DUT1 or the past value Δ UT between UT1 and UTC published in the IERS Bulletin A (http://maia.usno.navy.mil/) which contains previous leap seconds and predictions:

UTC = UT1 - DUT1 or UTC = UT - Δ UT

This relation is needed to obtain UT1 (UT) from UTC.

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 133 of 150

VEX-VRA-IGM-IS-3009

12.1.2 <u>Dynamical Time Scale T_{eph} for the JPL DE405 Ephemeris</u>

In a general relativistic framework, time is not an absolute quantity but depends on the location and motion of a clock. Therefor unlike UTC T_{eph} is not based on the rotation of the earth around its axis. T_{eph} refers to the center of mass of the solar system and is the independent variable of *barycentric planetary ephemerides*. It should be noted that during the years 1984 – 2003 the time scale of ephemerides referred to the barycenter of the solar system was the relativistic time scale Barycentric Dynamic Time TDB (see section 12.1.3.1).

From 2004 onwards this time scale for the JPL DE405 ephemeris will be replaced by T_{eph} . For practical purposes the length of the ephemeris second can be taken as equal to the length of the TDB second. T_{eph} is approximately equal to TDB, but not exactly. On the other hand, T_{eph} is mathematically and physically equivalent to the newly-defined TCB (see section 12.1.3.7), differing from it by only an offset and a constant rate. Within the accuracy required by MaRS, RSI and VeRa we use: $T_{eph} \sim TDB$.

T_{eph} is then defined as seconds past J2000, with J2000 being 12 h 1 January TDB.

12.1.3 Other Time Standards

12.1.3.1 Barycentric Dynamic Time (TDB)

Since the differences compared to TT are fairly small, the corrections can be determined by the following approximation :

TDB = TT +
$$0.001658 \cdot \sin g + 0.000014 \cdot \sin (2g)$$
 [s]

with g being the mean anomaly of the Earth in its orbit given by

$$g = 357.53 + 0.9856003 \cdot (JD(UT1) - 2451545.0) [deg]$$

12.1.3.2 International Atomic Time (TAI)

TAI provides the practical realization of a uniform time scale based on atomic clocks. This time is measured at the surface of the Earth. Since this time scale is a steady one, it differs from UTC by an integral number of leap seconds introduced up the current point in time:

$$TAI = UTC + LS$$

where LS is the number of leap seconds. The unit of TAI is the SI second.

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRa
Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 134 of 150

VEX-VRA-IGM-IS-3009

12.1.3.3 Terrestrial Dynamic Time (TT)

Terrestial Time (TT) – formerly Terrestrial Dynamical Time (TDT) - is to be understood as time measured on the geoid. It has conceptionally a uniform time scale. TT is the independent variable of *geocentric ephemerides*. TT replaced Ephemeris Time (ET) in 1984. The difference between TT and the atomic time scale (TAI) is a constant value of 32.184 seconds:

$$TT = TAI + 32.184$$

One therefore obtains also the relationship:

$$UTC = TT - 32.184 - LS$$

TT does not take into account relativistic corrections. It is used as an independent argument of geocentric ephemeris.

12.1.3.4 GMT (UT)

Time is traditionally measured in days of 86400 SI seconds. Each day has 24 hours counted from 0^h at midnight. The motion of the real sun was replaced by the concept of a fictitious mean sun that moves uniformly in right ascension defining the Greenwich Mean Time (GMT) or Universal Time (UT). Greenwich Mean Sidereal Time (GMST), however, is the Greenwich hour angle of the vernal equinox, i. e. it denotes the angle between mean vernal equinox of date and the Greenwich meridian.

The mean vernal equinox is based on a reference system which takes into account the secular effects, i.e. the precession of the Earth's equator but not periodic effects such as the nutation of the Earth's axis.

In terms of SI seconds, the length of a sidereal day (i. e. the Earth's spin period) amounts 23^h 56^m $4^s.091 \pm 0^s.005$ (corresponding to a factor 1/1.00273790935) making it about four minutes shorter than a 24^h solar day. Hence, sidereal time and mean solar time have different "rates".

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRa
Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 135 of 150

VEX-VRA-IGM-IS-3009

12.1.3.5 *Universal Time (UT1)*

Universal Time UT1 is the presently adopted realization of a mean solar time scale (constant average length of a solar day of 24 hours) with UT1 = UT. As a result, the length of one second of UT1 is not constant because of the apparent motion of the sun and the rotation of the Earth. UT1 is therefore defined as a function of sidereal time.

For any particular day, 0 h UT1 is defined as the instant at which Greenwich Mean Sidereal Time (GMST) has the value:

GMST(
$$0^h$$
 UT1) = 24110^s.54841 + 8640184^s.812866 · T_o
+ 0^s .093104 · T_o^2 - 0^s .0000062 · T_o^3

For an arbitrary time of the day, the expression may be generalized to obtain the Greenwich hour angle GHA by multiplying this time with the factor 1.00273790935, adding this result to GMST and convert it into degrees (if so desired)

GMST (UT1) =
$$24110^{\circ}.54841 + 8640184^{\circ}.812866T_{0} + 1.00273790935UT1 + 0^{\circ}.093104T^{2} - 0^{\circ}.0000062 \cdot T^{3}$$

where T is the time in Julian centuries since the 1st of January 2000, 12 h, i.e. 2000 Jan. 1.5 :

$$T = \frac{JD(UT1) - 2451545}{36525}$$

and JD is the Julian Date.

Ecliptic and Earth equator at 2000 Jan 1.5 define the J2000 system.

The most useful relation for computer software is one that uses only JD (UT1):

$$GMST(^{\circ}) = 280.46061837 + 360.98564736629 \cdot (JD - 2451545.0) +$$

$$+ 0.000387933T^{2} - T^{3} / 38710000$$

The difference between UT1 and TT or TAI (atomic clock time, to be explained below) can only be determined retrospectively. This difference is announced by the International Earth Rotation Service (IERS) and is handled in practice by the implementation of leap seconds (maximum of two in one year).

The above formulae contain implicitly the Earth's mean angular rotation ω_{\oplus} in degrees per second [3.15].

$$\omega_{\oplus} (rad/s) = \left\{ 1.002737909350795 + 5.9006 \cdot 10^{-11} T - 5.9 \cdot 10^{-15} T^2 \right\} \cdot \frac{2\pi}{86400 s}$$

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 136 of 150

VEX-VRA-IGM-IS-3009

12.1.3.6 Geocentric Coordinate Time (TCG)

Geocentric Coordinate Time TCG represents the time coordinate of a four dimensional reference system and differs from TT by a constant scale factor yielding the relation

$$TCG = TT + L_G \cdot (JD - 2443144.5) \cdot 86400 s$$

$$L_{G} = 6.9692903 * 10^{-10}$$

For practical reasons this equation can also be put into the following relation:

$$TCG = TT + 2.2 \text{ s/cy} * (year-1977.0)$$

cy = century

12.1.3.7 Barycentric Coordinate Time (TCB)

The Barycentric Coordinate Time TCB has been introduced to describe the motion of solar system objects in a non rotating relativistic frame centered at the solar system barycenter. TCB and TCG exhibit a rate difference which depends on the gravitational potential of the Sun at the mean Earth-Sun distance 1 AU and the Earth's orbital velocity. The accumulated TCB-TT time difference amounts to roughly 11 s around epoch J2000.

$$TCB = TCG + L_C \cdot (JD - 2443144.5) \cdot 86400 \, s + P$$

(Mc Carthy 1996) and

$$P \approx +0^{s}.0016568 \cdot \sin(35999^{\circ}.37T + 357^{\circ}.5)$$

$$+0^{s}.0000224 \cdot \sin(32964^{\circ}.5T + 246^{\circ})$$

$$+0^{s}.0000138 \cdot \sin(71998^{\circ}.7T + 355^{\circ})$$

$$+0^{s}.0000048 \cdot \sin(3034^{\circ}.9T + 25^{\circ})$$

$$+0^{s}.0000047 \cdot \sin(34777^{\circ}.3T + 230^{\circ})$$

$$T = (JD - 2451545.0)/36525$$

$$L_{c} = 1.4808268457 \cdot 10^{-8}$$

The largest contribution is given by the first term. When neglecting the other terms we can approximate P by:

(3.16)

$$P = 0.001658 \text{ s} \sin(g) + 0.000014 \text{ s} \sin(2g)$$

MARS EXPRESS Radio Science Experiment MaRS

VENUS EXPRESS Radio Science VeRa
Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 137 of 150

VEX-VRA-IGM-IS-3009

12.1.3.8 Julian Date (JD)

In astronomical computations, a continuous day count is used which avoids the usage of a calendar. The Julian Date (JD) is the number of days since noon January 1, 4712 BC including fractions of the day.

12.1.3.9 Modified Julian Date (MJD)

Since the JD has become such a large number, the Modified Julian Date was introduced for convenience. JD was reset at November 17th 1858 which leads to the following equation :

 $MJD = JD - 2400000.5^d$

Note that the count for MJD starts at midnight.

12.2 TIME FORMATS

12.2.1 ISO Time Format

In our data and label files we use UTC time to measure the time the data were recorded at the ground station in the PDS compliant ISO/DIS 8601 standard format CCYY-MM-DDTHH:MM:SS.sss. (Example: 2004-06-21T025208.000 corresponds to the date 21.6.2004 and the time of day 2:52:08.000).

12.2.2 Time in Fractions of Days of Year

This is the UTC time in the format fraction of days of year starting with the first day of year the data was recorded at 00:00.000 UTC. (Example: 2003-07-01T18:03:02.000 in ISO format corresponds to 182.752106 in fraction of days since the 1st July was the 182th day of the year 2003.) This format is only used in the data files.

12.2.3 Ephemeris Time Format

Ephemeris time is given in seconds starting with the 1st January 2000 at 12:00:00.000 TDB (see also section 12.1.2).

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 138 of 150

VEX-VRA-IGM-IS-3009

13 APPENDIX

13.1 IFMS CONFIGURATION FILE EXPLANATION

line	abbreviation	possible value	description
1	station_id	NN12	
2 3	spacecraft_id	MEX1	
3	data_set_kind	OP	
4	dap_type	D1	
5	ref_time_tag	20030702.001055.000	
6	first_sample_time	20030702.002114.000	
7	last_sample_time	20030702.021414.000	
8	requestor_id	STC	
9	requested_id	1	
10	why_opend	Conf_Changed	
11	total_samples	6781	
12	sample_period	1.	
13	internal_reference	No	
14	uplink_carrier_230	Yes	
15	actual_carrier_indic	3067833783.	
16	actual_tone_indic	-	
17	epd_source	0	
18	rg_data_corrected	No	
19	sequence_id	3	
			Maximum number of logged
20	LogMaxEv	N/A in input Data	events
21	LogDebugMode	N/A in input Data	Select `Debug` logging level
22	Dsp_MetPresent	N/A in input Data	Meteorological Unit present
23	Dsp_UlmPresent	N/A in input Data	Up-Link Modulator present
24	Dsp_Cf1Present	N/A in input Data	Common Front End #1 present
25	Dsp_Cf2Present	N/A in input Data	Common Front End #1 present
			Diversity Combination
26	Dsp_DcePresent	N/A in input Data	Estimator present and GDSP
			Ranging Demodulator present
27	Dsp_RgdPresent	N/A in input Data	and GDSP
			Remnant Carrier Demodulator
28	Dsp_RcdPresent	N/A in input Data	present and GDSP
			Suppressed Carrier
			Demodulator present and
29	Dsp_ScdPresent	N/A in input Data	GDSP
	D T 1 D 1	N1/A : :	Telemetry Channel Decoder
30	Dsp_TcdsPresent	N/A in input Data	System present and GDSP
0.4	Lilling O a a E + O + I	"000NALL- "	Up-Link Modulator Carrier
31	UlmCarFrSel	"230MHz"	Output Frequency

VENUS EXPRESS Radio Science VeRa
Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 139 of 150

			Up-Link Modulator Carrier
32	UlmCarFrOffs	0	Output Frequency Offset
			Up-Link Modulator Carrier
33	UlmCarNomLvl	4	Nominal output level
			Up-Link Modulator Carrier Test
34	UlmCarTstOut	No	output selection
			Up-Link Modulator Carrier Test
35	UlmCarTstLvl	0.0	output attenuation
36	UlmCarSpecInv	No	
	CCar opcomit		Up-Link Modulator Carrier
37	UlmSwpDelStF	0	Sweep: Delta Start Frequency
,	O IIII O II P D O I O II		Up-Link Modulator Carrier
38	UlmSwpDelSpF	0	Sweep: Delta Stop Frequency
	O IIII O III P D O I O P I	ŭ	Up-Link Modulator
39	UlmSwpRate	1	Carrier Sweep: sweep rate
	omowprate		Up-Link Modulator
			Carrier Sweep: acceleration
40	UlmSwpAccFact	1	factor
'	omiowp/ tool dot		Up-Link Modulator
			Carrier modulation TC priority
41	UlmPrior	No	selection
''			Up-Link Modulator TC data
42	UlmTcSrc	"TCE1"	source
72	Omi rooro	1021	Up-Link Modulator TC data
43	UlmTcDataCoding	"NRZ-L"	coding
'	Omi robata odanig	14142	Up-Link Modulator TC TCE
44	UlmTcTceMode	"Normal"	mode
' '	O III I O I O O I I O O O	T TOTTING!	Up-Link Modulator TC
			modulation index for
45	UlmTcModIdx Ana	0.0000	analogue source
			Up-Link Modulator
			TC modulation index for digital
46	UlmTcModIdx Dig	1.000	source
			Up-Link Modulator TC
47	UlmTcMod	"PM on sub-carrier"	modulation mode
			Up-Link Modulator TC bit-rate
			numerator in RC modes
48	UlmTcRCBRateN	1	(1=>integer mode)
			Up-Link Modulator TC bit-rate
49	UlmTcRCBRateD	8	denominator in RC modes
			Up-Link Modulator TC P-
50	UlmTcSCBRateP	100.00	channel bit-rate in SC modes
			Up-Link Modulator TC Q-
51	UlmTcSCBRateQ	100.00	channel bit-rate (U-QPSK only)
			Up-Link Modulator TC
52	UlmTcUnbalRatio	-15.0	modulation unbalance ratio (U-
-	•	•	MEX_3016_ROS_3087_VEX_3009.doc Created

[,]C:\Dokumente und Einstellungen\Janusz0501\Desktop\Archiving_Documents\MEX_3016_ROS_3087_VEX_3009.doc Created on $24/06/2011\ 10:11:00$

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 140 of 150

			QPSK only)
			Up-Link Modulator TC square-
- 2	L Ura Ta Ca May Cuba	Nie	wave subcarrier selection (RC
53	UlmTcSqWavSubc	No	only)
54	UlmTcRCBRateSel	No	Up-Link Modulator TC irrational bit-rate selection for RC modes
54	UllifickCbkaleSei	INO	Up-Link Modulator TC irrational
55	UlmTcRCIrrBRate	2000.00	bit-rate for RC modes
	Ommortone	2000.00	Up-Link Modulator TC sub-
56	UlmTcSubF	16000	carrier frequency
			Up-Link Modulator TC & Tone
			modulation index ramp time
57	UlmRampTime	0.00	(0=> no ramp)
			Up-Link Modulator Test bit
58	UlmTestPat	N/A in input Data	pattern selection
			Common Front End 1 Input
59	Cf1Input	N/A in input Data	selection
			Common Front End 1&2 AGC
60	CfeAgcCst	N/A in input Data	Time Constant
C4	Of a A mallaged	NI/A in input Data	Common Front End 1&2 AGC
61	CfeAgcHead	N/A in input Data	Head room
62	Cf1AGain	N/A in input Data	Common Front End 1 Channel A gain (used if CfeAgcCst is 0)
02	CITAGaill	INA III IIIput Data	Common Front End 1 Channel
63	Cf1BGain	N/A in input Data	B gain (used if CfeAgcCst is 0)
	OTTE COM	Tin tin input Buta	Common Front End 1 Dither
64	Cf1Dither	N/A in input Data	noise enabled
		'	Common Front End 2 Input
65	Cf2Input	N/A in input Data	selection
			Common Front End 2 Channel
66	Cf2AGain	N/A in input Data	A gain (used if CfeAgcCst is 0)
			Common Front End 2 Channel
67	Cf2BGain	N/A in input Data	B gain (used if CfeAgcCst is 0)
	0.60 7.11		Common Front End 2 Dither
68	Cf2Dither	N/A in input Data	noise enabled
			Diversity Combination
60	DooFrogDlop	N/A in input Data	Estimator Frequency plan selection
69	DceFreqPlan	N/A in input Data	Diversity Combination
70	DceInput	N/A in input Data	Estimator Input selection
, 0	Docinput	IV// III IIIput Data	Diversity Combination
			Estimator Expected C/No
71	DceExpCN0Avail	N/A in input Data	available
		· ·	Diversity Combination
72	DceExpCN0	N/A in input Data	Estimator Expected C/No

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 141 of 150

73	DceCFrUnc	N/A in input Data	Diversity Combination Estimator Carrier frequency uncertainty
74	DceCFrRateUnc	N/A in input Data	Diversity Combination Estimator Carrier frequency rate uncertainty Diversity Combination
75	DceCAcqMode	N/A in input Data	Estimator Acquisition Mode (SC: sweep, RC: FFT1) Diversity Combination
76	DceUseAcq	N/A in input Data	Estimator Use acquisition for initial phase estimate Diversity Combination Estimator Correlation
77	DceCorrBw	N/A in input Data	bandwidth
		,	Diversity Combination
78	DceEstMode	N/A in input Data	Estimator mode
			Diversity Combination
L			Estimator Polarisation angle
79	DceAngPreSt	N/A in input Data	rate pre-steer
80	DooModDomov	N/A in input Data	Diversity Combination
00	DceModRemov	N/A in input Data	Estimator Modulation removal Diversity Combination
			Estimator slow FFT: centre
81	DceFftCentre	N/A in input Data	frequency
			Diversity Combination
			Estimator slow FFT: span ratio
82	DceFftSpan	N/A in input Data	(actual span is 17.5 MHz / N)
			Diversity Combination
83	DceAna_0	N/A in input Data	Estimator Analogue driver
			Diversity Combination
0.4	D A 4	NI/A in in a LD ata	Estimator Complex analogue
84	DceAna_1	N/A in input Data	Source
			Diversity Combination Estimator Real analogue
85	DceAna 2	N/A in input Data	source
	D00/11/a_2	1477 till illipat Bata	Ranging Demodulator
86	RgdSpecInv	No	Spectrum inversion
			Ranging Demodulator Up-link
87	RgdUplkConv	6936988810	carrier conversion
			Ranging Demodulator
88	RgdCoherTrs	Yes	Coherent transponder
			Ranging Demodulator
00	DadTD4	000	Spacecraft coherent
89	RgdTR1	880	transponder ration numerator
90	RgdTR2	749	Ranging Demodulator

[,]C:\Dokumente und Einstellungen\Janusz0501\Desktop\Archiving_Documents\MEX_3016_ROS_3087_VEX_3009.doc Created on $24/06/2011\ 10:11:00$

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 142 of 150

			Spacecraft coherent
			transponder ration
			denominator
			Ranging Demodulator
	D ID II OF	0.400.400000	Spacecraft non-coherent down-
91	RgdDnlkCF	8420429800	link carrier frequency
			Ranging Demodulator Down-
	RgdDnlkConv	8350165420	link carrier conversion
93	RgdPolarisation	"Combined"	
			Ranging Demodulator Manual
94	RgdPhEst	0.00	phase estimate
			Ranging Demodulator Post-
95	RgdPostProc	1	processing
			Ranging Demodulator
96	RgdExpCN0Avail	Yes	Expected C/No available
			Ranging Demodulator
97	RgdExpCN0	46	Expected C/No
	0 1		Ranging Demodulator Carrier
98	RgdCFrUnc	1000000	frequency uncertain
	3		Ranging Demodulator Carrier
99	RgdCFrRateUnc	1000	frequency rate uncertain
	9		Ranging Demodulator Carrier
100	RgdCAcqMode	"FFT2"	acquisition
	r tga ez tequileae		Ranging Demodulator Use
			acquisition for initial phase
101	RgdUseAcq	Yes	estimate
'	. 194000, 104	1.00	Ranging Demodulator Carrier
102	RgdCLpNoBw	300.0	loop noise bandwidth (2BL)
1.02	r tga o Epi to Ew	000.0	Ranging Demodulator Carrier
103	RgdCLpOrder	2	loop order
103	reguerperaer	_	Ranging Demodulator Carrier
104	RgdCLpPhEst	"RCD"	
104	RydCLpFIIESt	RCD	loop phase estimator
105	PadCl n ChaDal	"STEP"	Ranging Demodulator Carrier
105	RgdCLp_ChgDel	SIEF	loop – Change delay
106	DadTl »Dw	1 360	Ranging Demodulator Tone
106	RgdTLpBw	1.260	loop bandwidth
			Ranging Demodulator Tone
407	David Til Davi Ot	Va a	loop Doppler presteering
107	RgdTLPreSt	Yes	enable
400	D 171 OL D 1	"OTED"	Ranging Demodulator Tone
108	RgdTLp_ChgDel	"STEP"	loop – Change delay
	-		Ranging Demodulator
109	RgdAna_0	N/A in input Data	Analogue driver
			Ranging Demodulator Complex
110	RgdAna_1	N/A in input Data	analogue source

VENUS EXPRESS Radio Science VeRa
Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 143 of 150

111	RgdAna_2	N/A in input Data	Ranging Demodulator Real analogue source
112	RcdSpecInv	No	Remnant Carrier Demodulator Spectrum inversion
113	RcdUplkConv	6936988810	Remnant Carrier Demodulator Up-link carrier conversion Remnant Carrier Demodulator
114	RcdCoherTrs	Yes	Coherent transponder Remnant Carrier Demodulator
115	RcdTR1	880	Spacecraft coherent transponder ratio numerator Remnant Carrier Demodulator
116	RcdTR2	749	Spacecraft coherent transponder ratio denominator Remnant Carrier Demodulator
117	RcdDnlkCF	8420429800	Spacecraft non-coherent down- link carrier frequency Remnant Carrier Demodulator
118	RcdDnlkConv	8350165420	Down-link carrier conversion
	RcdPolarisation	"Combined"	Down link carrier conversion
113	Cor Garisation	Combined	Remnant Carrier Demodulator
120	RcdPhEst	0.00	Manual phase estimate
121	RcdPostProc	1	Remnant Carrier Demodulator Post-processing
122	RcdExpCN0Avail	Yes	Remnant Carrier Demodulator Expected C/No available
1.00			Remnant Carrier Demodulator
123	RcdExpCN0	46	Expected C/No
404	D 10511	4000000	Remnant Carrier Demodulator
124	RcdCFrUnc	1000000	Carrier frequency uncertainty
			Remnant Carrier Demodulator
405	DadOE-Datalia	1000	Carrier frequency rate
125	RcdCFrRateUnc	1000	uncertainty
			Remnant Carrier Demodulator
100	DodCA agMada	 	acquisition mode (FFT1
120	RcdCAcqMode	"FFT2"	recommended)
			Remnant Carrier Demodulator
127	Dod loo Aog	Yes	Use acquisition for initial phase estimate
127	RcdUseAcq	res	
			Remnant Carrier Demodulator
128	RcdCLpNoBw	100.0	Carrier loop noise bandwidth (2BL)
120	Redelpinobw	100.0	Remnant Carrier Demodulator
120	RcdCLpOrder	2	Carrier loop order
129	NouoLpoidei	_	Remnant Carrier Demodulator
130	RcdCLpPhEst	"RCD"	Carrier loop phase estimator
•	•	i.	MEX_3016_ROS_3087_VEX_3009.doc Created

[,]C:\Dokumente und Einstellungen\Janusz0501\Desktop\Archiving_Documents\MEX_3016_ROS_3087_VEX_3009.doc Created on $24/06/2011\ 10:11:00$

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 144 of 150

131	RcdCLp_ChgDel	"STEP"	Remnant Carrier Demodulator Carrier loop – Change delay
131	Redectp_engber	SIEF	Remnant Carrier Demodulator
132	RcdTLpBw	0.00010	Timing loop bandwidth (2BL) Remnant Carrier Demodulator
133	RcdTLpOrder	2	Timing loop order
134	RcdTLpPhEst	"DD"	Remnant Carrier Demodulator Clock loop estimator
135	RcdTLp_ChgDel	"STEP"	Remnant Carrier Demodulator Timing loop – Change delay
136	RcdSCLpFreq	0	Remnant Carrier Demodulator Subcarrier loop nominal subcarrier frequency Remnant Carrier Demodulator
137	RcdSCLpPreSt	No	Subcarrier loop Subcarrier loop enable pre-steering
138	RcdSCLpBw	0.00010	Remnant Carrier Demodulator Subcarrier loop bandwidth
400	DadOOL aMadlad	1.10	Remnant Carrier Demodulator Subcarrier loop expected
139	RcdSCLpModInd	1.10	modulation index Remnant Carrier Demodulator
140	RcdSCLpPhEst	"Decision directed"	Subcarrier loop phase est. Mode (NDA if Es/No<-2dB) Remnant Carrier Demodulator
141	RcdSCLpAcq	"None"	Subcarrier loop acquisition strategy
140	DadOOL a DitNora	4	Remnant Carrier Demodulator Subcarrier loop bit clock
142	RcdSCLpBitNum	1	numerator Remnant Carrier Demodulator
143	RcdSCLpBitDen	1	Subcarrier loop bit clock denominator
111	DodSCI nSalMouSo	Voc	Remnant Carrier Demodulator Subcarrier loop square wave
144	RcdSCLpSqWavSc	Yes	Remnant Carrier Demodulator
145	RcdSCLpSRateUsed	Yes	Subcarrier loop symbol rate used
146	RcdSCLpSRate	419430.40	Remnant Carrier Demodulator Subcarrier loop symbol rate Remnant Carrier Demodulator
147	RcdSCLpDecodMode	"NRZ-L"	Subcarrier loop decoding mode Remnant Carrier Demodulator
148	RcdSCLp_ChgDel	"STEP"	Subcarrier loop – Change delay

[,]C:\Dokumente und Einstellungen\Janusz0501\Desktop\Archiving_Documents\MEX_3016_ROS_3087_VEX_3009.doc Created on $24/06/2011\ 10:11:00$

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 145 of 150

			Remnant Carrier Demodulator
149	RcdAna_0	N/A in input Data	Analogue driver Remnant Carrier Demodulator
150	RcdAna_1	N/A in input Data	Complex analogue source Remnant Carrier Demodulator
151	RcdAna_2	N/A in input Data	Real analogue source Suppressed Carrier
152	ScdSpecInv	No	Demodulator Spectrum inversion Suppressed Carrier
153	ScdUplkConv	1000000000	Demodulator Up-link carrier conversion Suppressed Carrier
154	ScdCoherTrs	No	Demodulator Coherent transponder Suppressed Carrier
155	ScdTR1	1	Demodulator Spacecraft coherent transponder ratio numerator Suppressed Carrier
156	ScdTR2	1	Demodulator Spacecraft coherent transponder ratio denominator Suppressed Carrier
157	ScdDnlkCF	1000000000	Demodulator Spacecraft non- coherent down-link carrier freq. Suppressed Carrier
158 159	ScdDnlkConv ScdPolarisation	1000000000 "X"	Demodulator Down-link carrier conversion
			Suppressed Carrier Demodulator Manual phase
160	ScdPhEst	0.00	estimate
161	ScdPostProc	1	Suppressed Carrier Demodulator Post.processing Suppressed Carrier Demodulator Expected C/No
162	ScdExpCN0Avail	No	available
163	ScdExpCN0	6	Suppressed Carrier Demodulator Expected C/No Suppressed Carrier
164	ScdCFrUnc	0	Demodulator Carrier frequency uncertainty Suppressed Carrier
165	ScdCFrRateUnc	o	Demodulator Carrier frequency

[,]C:\Dokumente und Einstellungen\Janusz0501\Desktop\Archiving_Documents\MEX_3016_ROS_3087_VEX_3009.doc Created on $24/06/2011\ 10:11:00$

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 146 of 150

I			rate uncertainty
			Suppressed Carrier
			Demodulator Carrier
			acquisition mode (Sweep
166	ScdCAcqMode	"Sweep"	recommended)
			Suppressed Carrier
			Demodulator Use acquisition
167	ScdUseAcq	No	for initial phase estimate
			Suppressed Carrier
			Demodulator Carrier loop
168	ScdCLpNoBw	0.1	Noise bandwidth (2BL)
		0.1	Suppressed Carrier
169	ScdCLpOrder	1	Demodulator Carrier loop order
		'	Suppressed Carrier
			Demodulator Carrier loop
170	ScdCLpPhEst	"RCD"	phase estimator
1''	CodoEpi nEst	TOB	Suppressed Carrier
			Demodulator Carrier loop –
171	ScdCLp ChgDel	"STEP"	Change delay
'''	Occorp_ongber	0121	Suppressed Carrier
			Demodulator Timing loop
172	ScdTLpBw	0.00001	bandwidth (2BL)
''-	OCG I EPDW	0.00001	Suppressed Carrier
173	ScdTLpOrder	1	Demodulator Timing loop order
1173	Sca i Epolaci		Suppressed Carrier
			Demodulator Clock loop
174	ScdTLpPhEst	"DD"	estimator
''	Ocu i Epi ii Est		Suppressed Carrier
			Demodulator Timing loop –
175	ScdTLp ChgDel	"STEP"	Change delay
1173	Oca rep_ongbor	3121	Suppressed Carrier
			Demodulator Modulation
176	ScdModFormat	"off"	format
''	Ocalviour offiliat		Suppressed Carrier
			Demodulator Modulation P
177	ScdModPRate	100	symbol rate
' ' '	Codiviour rate		Suppressed Carrier
			Demodulator Modulation Q
178	ScdModQRate	100	symbol rate (only for U-QPSK)
''	Countra Qi tato		Suppressed Carrier
			Demodulator Modulation
			expected balance ratio
179	ScdModExpBalAv	No	available
'	- CoamoaLApban (V		Suppressed Carrier
			Demodulator Modulation
180	ScdModExpBal	1.0	expected balance ratio
1.55	1003iiioaExpbai	1	jorpooled balance ratio

[,]C:\Dokumente und Einstellungen\Janusz0501\Desktop\Archiving_Documents\MEX_3016_ROS_3087_VEX_3009.doc Created on $24/06/2011\ 10:11:00$

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 147 of 150

181	ScdModIChCoding	"NRZ-L"	Suppressed Carrier Demodulator Modulation I Channel Coding Suppressed Carrier
182	ScdModQChCoding	"NRZ-L"	Demodulator Modulation Q Channel Coding Suppressed Carrier
183	ScdMchPulse	No	Demodulator match filter: pulse shaped selection Suppressed Carrier
184	ScdMchCosine	No	Demodulator match filter: root raise cosine selection Suppressed Carrier
185	ScdMchExcBw	20	Demodulator match filter: excess bandwidth
186	ScdAna_0	N/A in input Data	Suppressed Carrier Demodulator Analogue driver Suppressed Carrier
187	ScdAna_1	N/A in input Data	Demodulator Complex analogue source Suppressed Carrier
188	ScdAna_2	N/A in input Data	Demodulator Real analogue source
189	D1Dur	72000	Doppler 1 Data Acquisition Process: default duration D1 Data Acquisition Process:
190	D1SplPer	"1"	D1 Data Acquisition Process: sampling period Doppler 1 Data Acquisition
191	D1MaxDs	10000	Process: maximum samples per data-set Doppler 1 Data Acquisition
192	D1DSetKind	"OP"	Process: data-set kind (2 characters used)
193	D1Source	"RGD"	Doppler 1 Data Acquisition Process: source
194	D2Dur	72000	Doppler 2 Data Acquisition Process: default duration Doppler 2 Data Acquisition
195	D2SplPer	"1"	Process: sampling period Doppler 2 Data Acquisition
196	D2MaxDs	10000	Process: maximum samples per data-set Doppler 2 Data Acquisition
	D2DSetKind D2Source	"OP" "RCD"	Process: data-set kind (2 characters used) Doppler 2 Data Acquisition

[,]C:\Dokumente und Einstellungen\Janusz0501\Desktop\Archiving_Documents\MEX_3016_ROS_3087_VEX_3009.doc Created on $24/06/2011\ 10:11:00$

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 148 of 150

			Process: source
			AGC 1 Data Acquisition
199	G1Dur	72000	Process: default duration
			AGC 1 Data Acquisition
200	G1SplPer	1.0	Process: sampling period
	C 1 G C 1	1.0	AGC 1 Data Acquisition
			Process: maximum samples
201	G1MaxDs	10000	per data-set
	o maxes		AGC 1 Data Acquisition
			Process: data-set kind (2
202	G1DSetKind	"OP"	characters used)
			AGC 1 Data Acquisition
203	G1Source	"RCD"	Process: source
	1000.00	1.02	AGC 2 Data Acquisition
204	G2Dur	72000	Process: default duration
	02541	72000	AGC 2 Data Acquisition
205	G2SplPer	1.0	Process: sampling period
200	OZOPII CI	1.0	AGC 2 Data Acquisition
			Process: maximum samples
206	G2MaxDs	10000	per data-set
200	OZIVIGAD3	10000	AGC 2 Data Acquisition
			Process: data-set kind (2
207	G2DSetKind	"OP"	characters used)
			AGC 2 Data Acquisition
208	G2Source	"RGD"	Process: source
200	02000100	NOB	Meteo Data Acquisition
200	MeDur	72000	Process: default duration
200	MeBai	72000	Meteo Data Acquisition
210	MeSplPer	60	Process: sampling period
210	INICOPII CI	00	Meteo Data Acquisition
			Process: maximum samples
211	MeMaxDs	10000	per data-set
211	IVICIVIANDS	10000	Meteo Data Acquisition
			Process: data-set kind (2
212	MeDSetKind	"OP"	characters used)
	Medocutina		Ranging Data Acquisition
213	RgDur	72000	Process: default duration
213	l (gDui	72000	Ranging Data Acquisition
214	RgSplPer	1	Process: sampling period
	r gopii ci	'	Ranging Data Acquisition
			Process: maximum samples
215	RgMaxDs	10000	per data-set
213	TAGINIANDS	10000	Ranging Data Acquisition
			Process: data-set kind (2
216	RgDSetKind	"OP"	characters used)
	RgToneF	1061683.200	Ranging Data Acquisition
<u>-</u>		TUO TUOJ.ZUU 100 TUOJ.ZUU 100 TUOJ.ZUU	

[,]C:\Dokumente und Einstellungen\Janusz0501\Desktop\Archiving_Documents\MEX_3016_ROS_3087_VEX_3009.doc Created on $24/06/2011\ 10:11:00$

VENUS EXPRESS Radio Science VeRaDocument name: **File Naming Convention**

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 149 of 150

			Process: nominal tone
			frequency
			Ranging Data Acquisition
040		0.7	Process: transmitted tone
218	RgToneTxModInd	0.7	modulation index
			Ranging Data Acquisition
040	DaTara DuMa alla d		Process: expected received
219	RgToneRxModInd	0.2	tone modulation index
000	DaTanalatan	4.0	Ranging Data Acquisition
220	RgToneInteg	1.0	Process: tone integration time
224	DaTana Cattl	4.0	Ranging Data Acquisition
221	RgToneSettl	1.0	Process: tone settling time
			Ranging Data Acquisition
222		III limb Ol accil	Process: code modulation
222	RgCodeModInd	"High&Low"	index
			Ranging Data Acquisition
222	DaCodoMov	14	Process: maximum code
223	RgCodeMax	14	length
			Ranging Data Acquisition
224	PaCodoIntoa	0.5	Process: code integration time
224	RgCodeInteg	0.5	
			Ranging Data Acquisition Process: code sequence
225	RgCodeRestart	Yes	immediate restart
225	Rycoueresian	1 65	
			Ranging Data Acquisition Process: repetitive code
226	RgCodeRepet	No	sequence
	Epd	13.33	Expected propagation delay
221	Сри	13.33	Expected propagation delay
228	EpdDer	0.000020099	derivative
	EpdTime	"19700101.000000.000"	
223	<u> </u>	13700101.000000.000	Station identifier (4 characters
230	StationId	"NN12"	used)
230	Stationiu	ININIZ	Mission identifier (8 characters
231	MissionId	"MEX1"	used)
201	IVIIOOIOTTIA	WEXT	Spacecraft identifier (4
232	SpacecraftId	"MEX1"	characters used)
	AdsdAct	N/A in input Data	Data-set deletion: enabled
200	/ taba/ tot	N// Ciri input Bata	Data-set deletion: Delay
234	AdsdDelay	N/A in input Data	between runs
	radabolay	Timpat Bata	Data-set deletion: maximum
235	AdsdMaxAge	N/A in input Data	age for data-sets
	, tabannan tgo	Turk in input Bata	Data-set deletion: maximum
236	AdsdPercen	N/A in input Data	percentage used
		The most batta	Data-set handling: maximum
237	AdsdMaxSupLog	N/A in input Data	support log entries
-		•	MEX_3016_ROS_3087_VEX_3009.doc Created

[,] C:\Dokumente und Einstellungen\Janusz0501\Desktop\Archiving_Documents\MEX_3016_ROS_3087_VEX_3009.doc Created on $24/06/2011\ 10:11:00$

VENUS EXPRESS Radio Science VeRa Document name: File Naming Convention

Document number: MEX-MRS-IGM-IS-3016 Issue: 12 Revision: 14

ROS-RSI-IGM-IS-3087 Date: 30.05.2016 Page 150 of 150

			Near-Earth Simulation:
238	NESim_Duration	N/A in input Data	Duration (around Zenith)
	_	•	Near-Earth
239	NESim Height	N/A in input Data	Simulation: Spacecraft altitude
		•	Near-Earth
240	NESim_Speed	N/A in input Data	Simulation: Spacecraft speed
	_ '	,	Near-Earth
241	NESim_CoherMode	N/A in input Data	Simulation: Coherent mode
			Deep-Space
242	DSSim_Duration	N/A in input Data	Simulation: Duration
			Deep-Space
243	DSSim_RefTime	N/A in input Data	Simulation: Reference time
			Deep-Space
			Simulation: Frequency offset
244	DSSim_Offset	N/A in input Data	(at RefTime)
			Deep-Space Simulation:
245	DSSim_DpRate	N/A in input Data	Doppler rate
0.40	D00: E (LD)		Deep-Space Simulation: Earth
246	DSSim_EarthPhase	N/A in input Data	rotation phase (at RefTime)
0.47	D00' F	NI/A '- ' (D-(-	Deep-Space Simulation: Earth
247	DSSim_EarthPer	N/A in input Data	rotation period
0.40	DOC: Fauth Aven	NI/A in input Data	Deep-Space Simulation: Earth
248	DSSim_EarthAmp	N/A in input Data	rotation freq. Amplitude
249	DCol Moool	N/A in input Data	Delay calibration: Left-Hand circular measurement
249	DCal_MeasL	N/A in input Data	Delay calibration: Right-Hand
250	DCal_MeasR	N/A in input Data	circular measurement
230	Doai_IvicasiX	IN/A III IIIput Data	Delay calibration: Left-Hand
251	DCal_CorrL	N/A in input Data	circular correction
	Doui_00112	Tim Impat Bata	Delay calibration: Right-Hand
252	DCal CorrR	N/A in input Data	circular correction
		in the input Bata	Delay calibration: Delay
253	DCal Calib	N/A in input Data	Calibration
254	StatLat	N/A in input Data	Station latitude
255	StatLong	N/A in input Data	Station longitude
256	StatHeight	N/A in input Data	Station height
			Doppler Prediction: Mean
257	EarthMeanRadius	N/A in input Data	radius of earth model
		,	Doppler Prediction: Inverse
258	EarthInvFlatCoef	N/A in input Data	flattening coef. of earth model
			Doppler Prediction: Default
259	DpPredDur	N/A in input Data	duration